The multi-birth property of Markov branching processes with immigration

Li Junping Joint work with Li Y

Central South University

18th Workshop on Markov Processes and Related Topics July, 30-Aug., 02, 2023, Tianjing University.

Li Junping

æ

æ

2 Preliminary

2 Preliminary

2 Preliminary

3 Conclusions

5 Acknowledgements

Branching process

State space $\mathbb{Z}_+ = \{0, 1, \cdots\}.$

► Definition

A conservative Q-matrix $Q = (q_{ij}; i, j \in \mathbb{Z}_+)$ is called a branching-immigration Q-matrix if it takes the following form:

$$q_{ij} = \begin{cases} ib_{j-i+1} + a_{j-i+1}, & \text{if } i \ge 0, j \ge i-1\\ 0, & \text{otherwise}, \end{cases}$$
(1.1)

where

$$\begin{cases} a_0 = 0, \ a_j \ge 0 \ (j \ge 2), \ 0 < -a_1 = \sum_{j=2}^{\infty} a_j < \infty, \\ b_j \ge 0 \ (j \ne 1), \ 0 < -b_1 = \sum_{j \ne 1} b_j < \infty. \end{cases}$$
(1.2)

A Markov Branching-immigration process (simply, MBIP) is a continuous-time Markov chain taking values in \mathbb{Z}_+ whose transition function $P(t) = (p_{ij}(t) : i, j \in \mathbb{Z}_+)$ satisfies the Kolmogorov equations

$$P'(t) = P(t)Q, \tag{1.3}$$

where Q is a branching Q-matrix.

Li and Chen [1] presented the regularity criteria for Q defined in (1.1)-(1.2). We assume that the process Q is regular throughout this talk.

Let $\{X(t): t \ge 0\}$ denote the corresponding process and $P(t) = (p_{ij}(t): i, j \in \mathbb{Z}_+)$ denote its transition function. Define

$$F(t,u) = \sum_{j=0}^{\infty} p_{1j}(t)u^j.$$

• Problems:

(i) How many particles died until time t ?

(ii) What is the *m*-birth number of particles until time t (here $m \neq 0$ is a fixed integer) ?

(iii) How many particles who ever lived in the system (i.e., the total death number)?

• Related conclusions:

(i) Weighted branching process: Li Y., Li J. and Chen A. (2021, Sciences in China: Mathematics, in Chinese)

(ii) Weighted Markov collision processes: Li Y., Li J. (2021, Front. Math. China, 16(2):525 - 542).

We first make some preliminaries. Suppose that D is a finite subset of \mathbb{Z}_+ with $1 \notin D$. Let

$$[0,1]^D = \{ \vec{v} = (v_k : k \in D) : v_k \in [0,1] \ \forall k \in D \}$$

and

$$\mathbb{Z}^D_+ = \{ \vec{l} = (l_k : k \in D) : l_k \in \mathbb{Z}_+ \ \forall k \in D \}.$$

For simplicity of notations, in the following, we let 1 denote the vector in \mathbb{Z}^D_+ whose components are all 1 and for $k \in D$, $\vec{e_k}$ denote the vector in \mathbb{Z}^D_+ whose k'th component is 1 and others are 0.

Define

$$A(u) = \sum_{j=1}^{\infty} a_j u^{j-1}, \quad B(u) = \sum_{j=0}^{\infty} b_j u^j$$
(2.1)

and

$$B_D(u, \vec{v}) = \sum_{j \in D} b_j u^j \vec{v} \,\,^{\vec{e}_j}, \quad \bar{B}_D(u) = \sum_{j \in \bar{D}} b_j u^j \tag{2.2}$$

for $u \in [0,1], \vec{v} \in [0,1]^D$, where $\vec{v} \ \vec{l} = \prod_{k \in D} v_k^{l_k}$ for $\vec{v} = (v_k : k \in D)$, $\vec{l} = (l_k : k \in D)$ and $\bar{D} = \mathbb{Z}_+ \setminus D$.

Define

$$A(u) = \sum_{j=1}^{\infty} a_j u^{j-1}, \quad B(u) = \sum_{j=0}^{\infty} b_j u^j$$
(2.1)

and

$$B_D(u, \vec{v}) = \sum_{j \in D} b_j u^j \vec{v} \,\,^{\vec{e}_j}, \quad \bar{B}_D(u) = \sum_{j \in \bar{D}} b_j u^j \tag{2.2}$$

for $u \in [0,1], \vec{v} \in [0,1]^D$, where $\vec{v} \ ^{\vec{l}} = \prod_{k \in D} v_k^{l_k}$ for $\vec{v} = (v_k : k \in D)$, $\vec{l} = (l_k : k \in D)$ and $\bar{D} = \mathbb{Z}_+ \setminus D$. It is obvious that $B(u), \ \bar{B}_D(u)$ are well defined at least on [0,1], and $B_D(u, \vec{v})$ is well defined at least on $[0,1] \times [0,1]^D$.

The following theorem reveals the properties of $\bar{B}_D(u) + B_D(u, \vec{v})$.

Theorem 2.1.

(i) For any $\vec{v} \in [0,1]^D$,

$$\bar{B}_D(u) + B_D(u, \vec{v}) = 0$$
 (2.3)

has at most 2 roots in [0,1]. The minimal nonnegative root $\rho(\vec{v}) \leq \rho$, where ρ is the minimal nonnegative root of B(u) = 0. (ii) $\lim_{\vec{v}\uparrow \mathbf{1}} \rho(\vec{v}) = \rho$, where $\vec{v}\uparrow \mathbf{1}$ means $v_k\uparrow \mathbf{1}$ ($k\in D$). (iii) $\rho(\vec{v})\in C^{\infty}([0,1)^D)$ and $\rho(\vec{v})$ can be expanded as

$$\rho(\vec{v}) = \sum_{\vec{l} \in \mathbb{Z}^D_+} \rho_{\vec{l}} \ \vec{v}^{\ \vec{l}},$$

where $\rho_{\vec{l}} \ge 0$ for all $\vec{l} \in \mathbb{Z}^D_+$.

Sketch of proof.

(1) Since $0 \leq B_D(u, \mathbf{0}) \leq B_D(u, \vec{v}) \leq B_D(u, \mathbf{1})$, (i) follows from Li and Chen [2]. (ii) is easy.

(2) For (iii), it follows from Li, Li & Chen [3] that $\rho(\vec{v}) \in C^{\infty}([0,1)^D)$.

Suppose that

$$\rho(\vec{v}) = \sum_{\vec{k} \in \mathbb{Z}_+^N} \rho_{\vec{k}} \vec{v}^{\ \vec{k}}.$$

Substituting the above expression of $\rho(\vec{v})$ into (2.3) yields

$$0 = \sum_{\vec{l} \in \mathbb{Z}_{+}^{D}} (\sum_{j \in \bar{D}} b_{j} \rho_{\vec{l}}^{*(j)}) \vec{v}^{\ \vec{l}} + \sum_{j \in D} b_{j} \sum_{\vec{l} \in \mathbb{Z}_{+}^{D}} \rho_{\vec{l}}^{*(j)} \vec{v}^{\ \vec{l} + \vec{e}_{j}}.$$

(3) By using mathematical induction respect to $\vec{l} \cdot \mathbf{1}$, we can prove $\rho_{\vec{l}} \ge 0$.

we now consider the multi-birth property of $\{X(t) : t \ge 0\}$.

As in the previous section, let $D \subset \mathbb{Z}_+$ be a finite subset with $1 \notin D$. We also assume that $b_k > 0$ for all $k \in D$ since there is no individual giving (k-1) offsprings if $b_k = 0$. For simplicity of notation, we write the set $\{k-1 : k \in D\}$ as D-1 in the following, i.e.,

$$D - 1 = \{k - 1 : k \in D\}.$$

The main purpose of this talk is to analyze the (D-1)-birth numbers of $\{X(t):t\geq 0\}$. For this purpose, we construct a new Q-matrix $\widetilde{Q} = (\widetilde{q}_{(i,\vec{m}),(j,\vec{l})}:(i,\vec{m}), (j,\vec{l})\in\mathbb{Z}_+\times\mathbb{Z}^D_+)$, where

$$=\begin{cases} \tilde{q}_{(i,\vec{m}),(j,\vec{l})} \\ ib_{j-i+1} + a_{j-i+1}, & if \ i \ge 0, j-i+1 \in \bar{D}, \vec{l} = \vec{m}, \\ ib_{j-i+1}, & if \ i \ge 0, j-i+1 \in D, \vec{l} = \vec{m} + \vec{e}_{j-i+1}, \\ a_{j-i+1}, & if \ i \ge 0, j-i+1 \in D, \vec{l} = \vec{m}, \\ 0, & otherwise, \end{cases}$$
(3.1)

with $\{a_k : k \ge 0\}$ and $\{b_k : k \ge 0\}$ given in (1.2).

Let
$$\widetilde{P}(t) = (\widetilde{p}_{(i,\vec{m}),(j,\vec{l})}(t) : (i,\vec{m}), (j,\vec{l}) \in \mathbb{Z}_+ \times \mathbb{Z}^D_+)$$
 be the Feller minimal \widetilde{Q} -function. Define

$$F_{i,\vec{m}}(t,u,\vec{v}) = \sum_{(j,\vec{l})\in\mathbb{Z}_+\times\mathbb{Z}_+^D} \tilde{p}_{(i,\vec{m}),(j,\vec{l})}(t)u^j\vec{v}^{\vec{l}}, \quad (u,\vec{v})\in[0,1]\times[0,1]^D,$$

æ

3

・日・ ・ ヨ・・

where
$$\vec{v^l} = \prod_{k \in D} v_k^{l_k}$$
 for $\vec{v} = (v_k : k \in D)$ and $\vec{l} = (l_k : k \in D)$.

Lemma 3.1.

Let \widetilde{Q} be defined in (3.1) and $\widetilde{P}(t) = (\widetilde{p}_{(i,\vec{m}),(j,\vec{l})}(t))$ be the Feller minimal \widetilde{Q} -function. Then (i) for any $(i,\vec{m}) \in \mathbb{Z}_+ \times \mathbb{Z}_+^D$ and $(u,\vec{v}) \in [0,1] \times [0,1]^D$,

$$\frac{\partial F_{i,\vec{m}}(t,u,\vec{v})}{\partial t} = [\bar{B}_D(u) + B_D(u,\vec{v})] \cdot \frac{\partial F_{i,\vec{m}}(t,u,\vec{v})}{\partial u} + A(u) \cdot F_{i,\vec{m}}(t,u,\vec{v}).$$
(3.2)

Moreover,

$$F_{i,\vec{m}}(t,u,\vec{v}) - u^{i}\vec{v}^{\vec{m}} = [\bar{B}_{D}(u) + B_{D}(u,\vec{v})] \cdot \frac{\partial}{\partial u} \mathbb{F}_{i,\vec{m}}(t,u,\vec{v}) + A(u) \cdot \mathbb{F}_{i,\vec{m}}(t,u,\vec{v}),$$
(3.3)

where $\overline{B}_D(u), B_D(u, \vec{v})$ are as in (2.2), $\mathbb{F}_{i,\vec{m}}(t, u, \vec{v}) = \int_0^t F_{i,\vec{m}}(s, u, \vec{v}) ds$. (ii) \widetilde{Q} is regular if and only if Q is regular.

Sketch of proof. (1) By Kolmogorov forward equations,

$$\sum_{(j,\vec{l})\in\mathbb{Z}_{+}\times\mathbb{Z}_{+}^{D}} \tilde{p}'_{(i,\vec{m}),(j,\vec{l})}(t)u^{j}\vec{v}^{\vec{l}}$$

$$= [\bar{B}_{D}(u) + B_{D}(u,\vec{v})] \cdot \sum_{(k,\vec{r})\in\mathbb{Z}_{+}\times\mathbb{Z}_{+}^{D}} \tilde{p}_{(i,\vec{m}),(k,\vec{r})}(t) \cdot ku^{k-1}\vec{v}^{\vec{r}}$$

$$+ A(u) \cdot \sum_{(k,\vec{r})\in\mathbb{Z}_{+}\times\mathbb{Z}_{+}^{D}} \tilde{p}_{(i,\vec{m}),(k,\vec{r})}(t) \cdot u^{k}\vec{v}^{\vec{r}}.$$

Thus, (i) is proved.

(2) Suppose Q is regular. By Li and Chen [1], we have $\rho = 1$ or that $\rho < 1$ and $\int_{\varepsilon}^{1} \frac{du}{-B(u)} = +\infty$ for all $\varepsilon \in (\rho, 1)$. If $\rho = 1$, then let $y = \rho(\vec{v})$ in (3.3), we know that

$$F_{i,\vec{m}}(t,\rho(\vec{v}),\vec{v}) - \rho^i(\vec{v})\vec{v}^{\vec{m}} = A(\rho(\vec{v})) \cdot \mathbb{F}_{i,\vec{m}}(t,\rho(\vec{v}),\vec{v}).$$

Then, letting $\vec{v}\uparrow \mathbf{1}$ in the above equality yields that \widetilde{Q} is regular. If $\rho < 1$ and $\int_{\varepsilon}^{1} \frac{du}{-B(u)} = +\infty$ for all $\varepsilon \in (\rho, 1)$. Using Laplace transform, we can also get the conclusion.

(3) Conversely, suppose that \widetilde{Q} is regular. By the theory of Markov chains $(\widetilde{p}_{(i,\vec{m}),(j,\vec{l})}(t):(i,\vec{m}),(j,\vec{l}) \in \mathbb{Z}_+ \times \mathbb{Z}^D_+)$ can be obtained as follows.

$$\begin{split} & \tilde{p}_{(i,\vec{m}),(j,\vec{l})}^{(n)}(t) \\ &= \begin{cases} \delta_{(i,\vec{m}),(j,\vec{l})} e^{-\tilde{q}_{(i,\vec{m})}t}, \\ \tilde{p}_{(i,\vec{m}),(j,\vec{l})}^{(0)}(t) + \int_{0}^{t} e^{-\tilde{q}_{(i,\vec{m})}s} \sum_{(k,\vec{r}) \neq (i,\vec{m})} \tilde{q}_{(i,\vec{m}),(k,\vec{r})} \cdot \tilde{p}_{(k,\vec{r}),(j,\vec{l})}^{(n-1)}(t-s) ds, \\ \tilde{p}_{(i,\vec{m}),(j,\vec{l})}(t) &= \lim_{n \to \infty} \tilde{p}_{(i,\vec{m}),(j,\vec{l})}^{(n)}(t), \quad (i,\vec{m}), (j,\vec{l}) \in \mathbb{Z}_{+} \times \mathbb{Z}_{+}^{D}, \end{split}$$

let

$$f_{i,j}^{(n)}(t,\vec{m}) = \sum_{\vec{l} \in \mathbb{Z}_+^D} \tilde{p}_{(i,\vec{m}),(j,\vec{l})}^{(n)}(t), \quad n \geq 0.$$

It can be proved that $f_{i,j}^{(n)}(t, \vec{m})$ is dependent of \vec{m} and converges to the Feller minimal Q-function, which implies that Q is regular.

Since we have assumed that Q is regular, by Lemma 3.1, we can see that \widetilde{Q} determines a unique \widetilde{Q} -process $\{(\widetilde{X}(t), \overrightarrow{Y}(t)) : t \ge 0\}$, where $\overrightarrow{Y}(t) = (Y_k(t) : k \in D)$ counts the (D-1)-birth number of $\{\widetilde{X}(t) : t \ge 0\}$. It follows from the proof of Lemma 3.1 that $\{\widetilde{X}(t) : t \ge 0\}$ is the MBIP with generator Q and thus has the same distribution as $\{X(t) : t \ge 0\}$. Therefore, we still use $\{X(t) : t \ge 0\}$ to denote $\{\widetilde{X}(t) : t \ge 0\}$ in the following, i.e., $\{(X(t), \overrightarrow{Y}(t)) : t \ge 0\}$ is the \widetilde{Q} -process, where $\{X(t) : t \ge 0\}$ is the MBIP and $\overrightarrow{Y}(t) = (Y_k(t) : k \in D)$ counts the (D-1)-birth number of $\{X(t) : t \ge 0\}$.

In particular, (i) if $D = \{0\}$ then $Y_0(t)$ counts the death number of $\{X(t): t \ge 0\}$ until time t; (ii) if $D = \{i\}$ $(i \ge 2)$, then $Y_i(t)$ counts the (i - 1)-birth number of $\{X(t): t \ge 0\}$ until time t; (iii) if $D = \{0, i\}$ $(i \ge 2)$, then $\vec{Y}(t) = (Y_0(t), Y_i(t))$ counts the death number and the (i - 1)-birth number of $\{X(t): t \ge 0\}$ until time t.

Lemma 3.2.

For
$$\widetilde{P}(t)$$
, we have that for any $(i, \vec{m}) \in \mathbb{Z}_+ \times \mathbb{Z}^D_+$ and
 $(u, \vec{v}) \in [0, 1] \times [0, 1]^D$,
 $F_{i, \vec{m}}(t, u, \vec{v}) = [F_{1,0}(t, u, \vec{v})]^i \cdot F_{0,0}(t, u, \vec{v}) \cdot \vec{v}^{\vec{m}}$, (3.4)
where $\vec{v}^{\vec{m}} = \prod_{k \in D} v_k^{m_k}$ for $\vec{v} = (v_k : k \in D)$ and $\vec{m} = (m_k : k \in D)$.

æ

- **→** → **→**

Proof. Omitted.

Now, denote

$$\begin{cases} H(t, u, \vec{v}) = F_{0,\mathbf{0}}(t, u, \vec{v}), & (u, \vec{v}) \in [0, 1] \times [0, 1)^D, \\ G(t, u, \vec{v}) = F_{1,\mathbf{0}}(t, u, \vec{v}), & (u, \vec{v}) \in [0, 1] \times [0, 1)^D. \end{cases}$$

Lemma 3.3.

Suppose that $(u, \vec{v}) \in [0, 1] \times [0, 1)^D$. Then $(H(t, u, \vec{v}), G(t, u, \vec{v}))$ is the unique solution of the system of differential equations

$$\begin{cases} \frac{\partial x}{\partial t} = xA(y), \\ \frac{\partial y}{\partial t} = x[B_D(y, \vec{v}) + \bar{B}_D(y) + yA(y)], \\ x|_{t=0} = 1, \\ y|_{t=0} = u. \end{cases}$$

$$(3.5)$$

Sketch of proof. It can be proved by using Kolmogorov backward equations and Lemma 3.2.

Sketch of proof. It can be proved by using Kolmogorov backward equations and Lemma 3.2.

The following theorem gives the joint probability generating function of (D-1)-birth numbers until time t, i.e., the joint probability generating function of $\vec{Y}(t)$.

Theorem 3.1.

Suppose that $\{X(t):t\geq 0\}$ is an MBIP. Then the joint probability generating function of $\vec{Y}(t)$ is given by

$$\begin{cases} E[\vec{v}^{\vec{Y}(t)}|X(0)=0] = H(t,1,\vec{v}), & \vec{v} \in [0,1]^D, \\ E[\vec{v}^{\vec{Y}(t)}|X(0)=1] = G(t,1,\vec{v}), & \vec{v} \in [0,1]^D, \end{cases}$$

where $(H(t, u, \vec{v}), G(t, u, \vec{v}))$ is the unique solution of (3.5). In particular, if $a_1 = 0$, then

$$E[\vec{v}^{\vec{Y}(t)}|X(0)=1] = G(t,1,\vec{v}), \quad \vec{v} \in [0,1]^D,$$

where $G(t, u, \vec{v})$ is the unique solution of

$$\begin{cases} \frac{\partial y}{\partial t} = B_D(y, \vec{v}) + \bar{B}_D(y) \\ y|_{t=0} = u. \end{cases}$$
(3.6)

Furthermore,

$$P(\vec{Y}(t) = \vec{m} | X(0) = 1) = g_{\vec{m}}(t) \; \forall \vec{m} \in \mathbb{Z}_{+}^{D},$$

where

$$\begin{cases} g_{\mathbf{0}}(t) = G(t, 1, \mathbf{0}) \\ g_{\vec{m}}(t) = \bar{B}_D(g_{\mathbf{0}}(t)) \cdot \int_0^t \frac{F_{\vec{m}}(s)}{\bar{B}_D(g_{\mathbf{0}}(s))} ds, \ \vec{m} \neq \mathbf{0} \end{cases}$$

with

$$F_{\vec{m}}(t) = \sum_{i \in D} b_i \cdot g_{\vec{m} - \vec{e}_i}^{*(i)}(t) + \sum_{i \in \bar{D}} b_i \cdot \sum_{\vec{l}^{(1)}, \dots, \vec{l}^{(i)} \neq \vec{m}, \ \vec{l}^{(1)} + \dots + \vec{l}^{(i)} = \vec{m}} g_{\vec{l}^{(1)}}(t) \cdots g_{\vec{l}^{(i)}}(t)$$

and $\{g_{\vec{m}}^{*(i)}(t): \vec{m} \in \mathbb{Z}_{+}^{D}\}$ being the *i*'th convolution of $\{g_{\vec{m}}(t): \vec{m} \in \mathbb{Z}_{+}^{D}\}$.

Sketch of Proof. (1) By Lemmas 3.2 and 3.3, we can prove (i). (2) Suppose that $a_1 = 0$. (3.5) becomes (3.6). we suppose that

$$G(t,1,\vec{v}) = \sum_{\vec{l} \in \mathbb{Z}^D_+} g_{\vec{l}}(t) \vec{v}^{\vec{l}}.$$

By (3.6), we get

$$\begin{cases} g'_{\mathbf{0}}(t) = \sum_{i \in \bar{D}} b_i g^i_{\mathbf{0}}(t) = \bar{B}_D(g_{\mathbf{0}}(t)), \\ g'_{\bar{l}}(t) = \sum_{i \in D} b_i g^{*(i)}_{\bar{l} - \vec{e}_i}(t) + \sum_{i \in \bar{D}} b_i g^{*(i)}_{\bar{l}}(t), \quad \vec{l} \neq \mathbf{0}. \end{cases}$$
(3.7)

Hence, it can be proved that

$$g_{\bar{l}}(t) = \bar{B}_D(g_0(t)) \cdot \int_0^t \frac{F_{\bar{l}}(s)}{\bar{B}_D(g_0(s))} ds, \quad \vec{l} \neq 0.$$

Remark 3.1.

(i) Generally, if X(t) starts from X(0) = i(> 1), then

$$E[\vec{v}^{\vec{Y}(t)}|X(0) = i] = H(t, 1, \vec{v}) \cdot [G(t, 1, \vec{v})]^i.$$

(ii) If $a_1 = 0$, then by the proof of Theorem 3.1,

$$G(t, u, \vec{v}) = \sum_{(j, \vec{l}) \in \mathbb{Z}_+ \times \mathbb{Z}_+^D} g_{j, \vec{l}}(t) u^j \vec{v}^{\vec{l}}, \quad (u, \vec{v}) \in [0, 1] \times [0, 1)^D,$$

where $g_{j,\vec{l}}(t)=p_{(1,\mathbf{0}),(j,\vec{l})}(t).$

The following theorem gives a recursive algorithm of $g_{j,\vec{l}}(t).$

Let
$$g_{j\vec{k}}^{*(i)}(t)$$
 be the *i*th convolution of $g_{j\vec{k}}(t)$ and
 $F_{j,\vec{k}}(t) = \sum_{i \in \mathbb{N}} b_i g_{j\vec{k}-\vec{e}_i}^{*(i)}(t) + \sum_{i \in \mathbb{N}^c} b_i \sum_{(l_1,\vec{k}_1),\cdots,(l_i,\vec{k}_i) \neq (j,\vec{k}), \sum_{m=1}^i (l_m,\vec{k}_m) = (j,\vec{k})} g_{l_1\vec{k}_1}(t) \cdots g_{l_i\vec{k}_i}(t).$

Theorem 3.2.

(i) If $0 \in D$ or $b_0 = 0$, then

$$\begin{cases} g_{0,\mathbf{0}}(t) = 0\\ g_{j,\vec{l}}(t) = e^{b_1 t} [\delta_{j,1} \delta_{\vec{l},\mathbf{0}} + \int_0^t F_{j,\vec{l}}(s) e^{-b_1 s} ds], \quad (j,\vec{l}) \neq (0,\mathbf{0}) \end{cases}$$

(ii) If $0 \notin D$ and $b_0 > 0$, then

$$\begin{cases} g_{0,\mathbf{0}}(t) = G(t,0,\mathbf{0}) \\ g_{j,\vec{l}}(t) = \bar{B}_D(g_{0,\mathbf{0}}(t)) \cdot [\delta_{j,1}\delta_{\vec{l},\mathbf{0}}b_0^{-1} + \int_0^t \frac{F_{j,\vec{l}}(s)}{\bar{B}_D(g_{0,\mathbf{0}}(s))} ds], \quad (j,\vec{l}) \neq (0,\mathbf{0}), \end{cases}$$

.⊒ . ►

э

Sketch of proof. Suppose that

$$G(t,u,\vec{v}) = \sum_{(j,\vec{k})\in\mathbb{Z}_+\times\mathbb{Z}_+^D} g_{j\vec{k}}(t) u^j \vec{v}^{\vec{k}}.$$

By (3.6),

$$\sum_{(j,\vec{k})\in\mathbb{Z}_{+}\times\mathbb{Z}_{+}^{D}}g'_{j\vec{k}}(t)u^{j}\vec{v}^{\vec{k}} = \sum_{(j,\vec{k})\in\mathbb{Z}_{+}\times\mathbb{Z}_{+}^{D}\setminus\{\mathbf{0}\}}\sum_{i\in D}b_{i}g^{*(i)}_{j\vec{k}-\vec{e}_{i}}(t)u^{j}\vec{v}^{\vec{k}} + \sum_{(j,\vec{k})\in\mathbb{Z}_{+}\times\mathbb{Z}_{+}^{D}}\sum_{i\in\bar{D}}b_{i}g^{*(i)}_{j\vec{k}}(t)u^{j}\vec{v}^{\vec{k}}.$$

Comparing the coefficients on the both sides yields

$$g'_{j\vec{k}}(t) = \sum_{i \in D} b_i g^{*(i)}_{j\vec{k} - \vec{e}_i}(t) + \sum_{i \in \bar{D}} b_i g^{*(i)}_{j\vec{k}}(t), \quad (j, \vec{k}) \in \mathbb{Z}^{N+1}_+.$$
 (3.8)

Hence,

$$g_{00}(t) = G(t, 0, \mathbf{0}).$$

For $(j,\vec{k}) \neq (0,\mathbf{0})$, by (3.8),

$$g'_{j\vec{k}}(t) = g_{j\vec{k}}(t)\bar{B}'_D(g_{00}(t)) + F_{j,\vec{k}}(t).$$
(3.9)

(i) If $0 \in D$ or $b_0 = 0$, then by (3.8), it is easy to see that

$$g_{00}(t) = 0, \quad \bar{B}'_D(g_{00}(t)) = b_1.$$

By (3.9),

$$g_{j\vec{k}}(t) = e^{b_1 t} [\delta_{j,1} \delta_{\vec{k},\mathbf{0}} + \int_0^t F_{j,\vec{k}}(s) e^{-b_1 s} ds].$$

(ii) If $0 \notin D$ and $b_0 > 0$, then

$$e^{\int_0^t \bar{B}'_D(g_{00}(s))ds} = e^{\int_0^t \bar{B}'_D(g_{00}(s)) \cdot \frac{g'_{00}(s)}{\bar{B}_D(g_{00}(s))}ds} = \frac{\bar{B}_D(g_{00}(t))}{b_0}$$

Hence,

$$g_{j\vec{k}}(t) = \bar{B}_D(g_{00}(t)) \cdot [\delta_{j,1}\delta_{\vec{k},0}b_0^{-1} + \int_0^t \frac{F_{j,\vec{k}}(s)}{\bar{B}_D(g_{00}(s))}ds], \quad (j,\vec{k}) \neq (0,0).$$

・ロ・ ・ 望 ・ ・ ほ ・ ・ ほ ・

Corollary 3.1.

Let $\{X(t); t \ge 0\}$ be an MBP with X(0) = 1. Then

$$E[v^{Y_0(t)}|X(0) = 1] = G(t, 1, v), \quad v \in [0, 1],$$

where ${\cal G}(t,u,v)$ is the unique solution of the equation

$$\begin{cases} \frac{\partial y}{\partial t} = B(y) - b_0(1-v), \\ y|_{t=0} = u, \end{cases} \quad u, v \in [0, 1]. \end{cases}$$

Corollary 3.2.

Let $\{X(t);t\geq 0\}$ be an MBP with X(0)=1 and m(>1) be fixed. Then

$$E[v^{Y_m(t)}|X(0) = 1] = G(t, 1, v), \quad v \in [0, 1],$$

where G(t, u, v) is the unique solution of the equation

$$\begin{cases} \frac{\partial y}{\partial t} = B(y) - b_m (1 - v) y^m, \\ y|_{t=0} = u, \end{cases} \quad u, v \in [0, 1]. \end{cases}$$

Let

$$\tau=\inf\{t\geq 0: X(t)=0\}$$

be the hitting time of 0 for X(t). By Theorem 3.1, we have

Theorem 3.3.

Let $\{X(t) : t \ge 0\}$ be an MBP with X(0) = 1. Then

$$E[\vec{v}^{\vec{Y}(\tau)}|\tau < \infty] = \rho^{-1} \cdot \rho(\vec{v}), \quad \vec{v} \in [0, 1]^D,$$

where ρ is the minimal nonnegative root of B(u) = 0.

Sketch of proof. (1) By Theorem 3.1 and (3.3) with i = 1 and $u = \rho(\vec{v})$, for $\forall t \ge 0$,

$$\rho(\vec{v}) = \sum_{\vec{l} \in \mathbb{Z}_{+}^{D}} p_{(1,\mathbf{0}),(0,\vec{l})}(t) \vec{v}^{\vec{l}} + \sum_{\vec{l} \in \mathbb{Z}_{+}^{D}} (\sum_{j=1}^{\infty} p_{(1,\mathbf{0}),(j,\vec{l})}(t) \rho(\vec{v})^{j}) \vec{v}^{\vec{l}}.$$
(3.10)

(2) Further prove that

$$G(\infty, 1, \vec{v}) = \sum_{\vec{l} \in \mathbb{Z}_{+}^{D}} p_{(1, \mathbf{0}), (0, \vec{l})}(\infty) \vec{v}^{\vec{l}} + \lim_{t \to \infty} \sum_{\vec{l} \in \mathbb{Z}_{+}^{D}} (\sum_{j=1}^{\infty} p_{(1, \mathbf{0}), (j, \vec{l})}(t)) \vec{v}^{\vec{l}} (3.11)$$

and

$$\rho(\vec{v}) = \sum_{\vec{l} \in \mathbb{Z}_{+}^{D}} p_{(1,\mathbf{0}),(0,\vec{l})}(\infty) \vec{v}^{\vec{l}}.$$
(3.12)

3) By (3.11) and (3.12),

$$G(\vec{v}) = \sum_{\vec{l} \in \mathbb{Z}_{+}^{D}} P(\vec{Y}(\tau) = \vec{l} | \tau < \infty) \cdot \vec{v}^{\vec{l}} = \rho^{-1} \cdot \rho(\vec{v})$$

 and

$$P(\vec{Y}(\tau) \le \vec{l} \mid \tau = \infty) = (1 - \rho)^{-1} \cdot \lim_{t \to \infty} \sum_{\vec{m} \le \vec{l}} \sum_{j=1}^{\infty} p_{(1,\mathbf{0}),(j,\vec{m})}(t) = 0.$$

æ

3

□ ▶ ▲ 三 ▶ ▲

Example 3.1. Let X(t) be a birth-death type MBP with death rate pb and birth rate qb (here, b > 0, $p \in (0, 1)$, p + q = 1), X(0) = 1. Then

$$B(u) = b(p - u + qu^2).$$

Proposition 3.1.

Let Y(t) be the death number of $X(\cdot)$ until t. Then

$$E[v^{Y(t)}] = \beta(v) + \frac{\alpha(v) - \beta(v)}{1 + \frac{\alpha(v) - 1}{1 - \beta(v)} \cdot e^{[\alpha(v) - \beta(v)]bqt}},$$

where

$$\alpha(v) = \frac{1 + \sqrt{1 - 4pqv}}{2q}, \quad \beta(v) = \frac{1 - \sqrt{1 - 4pqv}}{2q}.$$

Proposition 3.2.

Let Y(t) be the death number of $X(\cdot)$ until t. Then

$$E[v^{Y(\tau)}|\tau < \infty] = \beta(v),$$

where

$$\beta(v) = p\left(v + \sum_{n=2}^{\infty} \frac{(2n-3)!!2^{n-1}(pq)^{n-1}}{n!}v^n\right).$$

글▶ 글

Example 3.2. Let X(t) be an MBP with $b_0 = pb$ and $b_3 = qb$ (here, b > 0, $p \in (0, 1)$, p + q = 1), X(0) = 1. Then

$$B(u) = b(p - u + qu^3).$$

伺 ト く ヨ ト く ヨ ト

Proposition 3.3.

Let Y(t) be the death number of $X(\cdot)$ until t. Then

$$E[v^{Y(t)}] = \sum_{n=0}^{\infty} g_n(t)v^n,$$

where

$$\begin{cases} g_0(t) = (q + pe^{2bt})^{-1/2} \\ g_n(t) = e^{2bt} \cdot (q + pe^{2bt})^{-3/2} \cdot \int_0^t e^{-2bs} (q + pe^{2bs})^{3/2} F_n(s) ds, \ n \ge 1 \end{cases}$$

with

$$F_n(t) = bp\delta_{1,n} + bq \cdot \sum_{k_1,k_2,k_3 < n,k_1+k_2+k_3=n} g_{k_1}(t)g_{k_2}(t)g_{k_3}(t).$$

▲御▶ ▲理▶ ▲理≯

æ

References

ANDERSON W.(1991).

Continuous-Time Markov Chains: An Applications-Oriented Approach. Springer-Verlag, New York.

ASMUSSEN S. AND JAGERS P.(1997).

Classical and Mordern Branching Processes, Sptinger, Berlin.

Branching Processes.

Birkhauser, Boston.

ATHREYA K.B.(1994).

Large Deviation Rates for Branching Processes-I. Single Type Case.

The Annals of Appl. Probab., 4(3):779-790.

ATHREYA K.B. AND NEY P.E.(1972).

Branching Processes.

Springer, Berlin.

References

CHEN A.Y.(2002).

Uniqueness and extinction properties of generalised Markov branching processes.

J. Math. Anal. Appl., 274(2):482-494

CHEN A.Y.(2002).

Ergodicity and stability of generalised Markov branching processes with resurrection.

J. Appl. Probab., 39(4):786-803

CHEN A.Y. AND LI J.P. AND RAMESH N.(2005).

Uniqueness and extinction of weighted Markov branching processes.

Methodol. Comput. Appl. Probab., 7(4):489-516

CHEN A.Y. AND POLLETT P. AND LI J.P. AND ZHANG H.J.(2007).

A remark on the uniqueness of weighted Markov branching processes.

J. Appl. Probab., 44(1):279-283

HARRIS T.E.(1963).

The theory of branching processes.

Springer, Berlin and Newyork.

References

LI J.P. & CHEN A.Y.

Markov branching processes with immigration and resurrection.

Markov Process. Related Fields, 12(1):139-168 (2006).

LI J.P. AND CHEN A.Y.(2008).

Decay property of stopped Markovian Bulk-arriving queues.

Adv. Appl. Probab., 40(1):95-121.

The down/up crossing properties of weighted Markov branching processes (in Chinese).

Scientia Sinica Mathematica, 52(4):433-446 (2022).

RENSHAW E. AND CHEN A.Y.(1997).

Birth-death processes with mass annihilation and state-dependent immigration.

Comm. Statist. Stochastic Models, 13(2):239-253.

VATUTIN V.A.(1974).

Asymptotic behavior of the probability of the first degeneration for branching

processes with immigration.

▶ ▲□ ▶ ▲ 臣 ▶ ▲ 臣 ▶ ○ 臣 → のへ(

Acknowledgements

Thank you!

Email: jpli@mail.csu.edu.cn