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Background
Background

® Branching process
State space Z4 = {0,1,--- }.
» Definition

A conservative Q-matrix Q = (g;j;1,j € Z4) is called a
branching-immigration ()-matrix if it takes the following form:

tbj_j11+aj_;11, ifi>0,7>i—1
qij = 7 e . (1.1)
0, otherwise,

where

{ao =0,4;20(j22), 0<—a=3Zy0 <00,

bj =20 (#1), 0<—b1 =3, b; <oo.
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A Markov Branching-immigration process (simply, MBIP) is a
continuous-time Markov chain taking values in Z_ whose
transition function P(t) = (pi;(t) : 4, j € Z4) satisfies the
Kolmogorov equations

P'(t) = P()Q. (13)

where (@ is a branching @)-matrix.
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Li and Chen [1] presented the regularity criteria for ) defined in
(1.1)-(1.2). We assume that the process @ is regular throughout
this talk.

Let {X(¢) : t > 0} denote the corresponding process and

P(t) = (pij(t) : i, j € Z4) denote its transition function.

Define

F(t,u) =Y pi(t)u’.
j=0
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® Problems:
(i) How many particles died until time ¢ ?

(i) What is the m-birth number of particles until time ¢ (here
m # 0 is a fixed integer) ?

(iii) How many particles who ever lived in the system (i.e., the
total death number)?
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® Related conclusions:

(i) Weighted branching process: Li Y., Li J. and Chen A. (2021,
Sciences in China: Mathematics, in Chinese)

(ii) Weighted Markov collision processes: Li Y., Li J. (2021, Front.
Math. China, 16(2):525 - 542).
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Preliminary

We first make some preliminaries. Suppose that D is a finite
subset of Z; with 1 ¢ D. Let

0,1]” = {7 = (v : k € D) : v, € [0,1] Vk € D}
and
Z2 ={I=(:keD):ly € Z, Yk € D}.

For simplicity of notations, in the following, we let 1 denote the
vector in ZE whose components are all 1 and for k € D, é}. denote
the vector in ZE whose k'th component is 1 and others are 0.
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Define

A(u) = Zajuj_l, B(u
j=1

and

Bp(u,5) = > b7 %, Bp

jED

)= b (2.1)
j=0

(u) = Z bju? (2.2)

jeD

for u € [0,1],% € [0,1]P, where il= 1T vfj for ¥ = (vx : k € D),
keD

I=(y:keD)and D=2, \D.
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Define
A(u) = Zajuj_l, B(u) = ijuj (2.1)
j=1 =0

and

Bp(u,0) = > b7 %, Bp(u) =) b’ (2.2)

JjeD j€D
for u € [0,1],v € [0,1]", where 7 U = 1T vfj for ¥ = (vx : k € D),
keD
I=(y:keD)and D=2, \D.

It is obvious that B(u), Bp(u) are well defined at least on [0, 1],
and Bp(u, ) is well defined at least on [0, 1] x [0, 1]P.
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The following theorem reveals the properties of Bp(u) + Bp(u, ).

Theorem 2.1.
(i) For any @ € [0,1]P,

Bp(u) + Bp(u,v) =0 (2.3)

has at most 2 roots in [0, 1]. The minimal nonnegative root
p(¥) < p, where p is the minimal nonnegative root of B(u) = 0.
(i) limgpq p(U) = p, where ¥ 1 1 means v, 11 (k € D).

(iil) p(¥) € C*°(]0,1)P) and p(¥) can be expanded as

p(@) =Y oY,

where pr > 0 for all e Zf.



Preliminary
Preliminary

Sketch of proof.

(1) Since 0 < Bp(u,0) < Bp(u,?) < Bp(u, 1), (i) follows from
Li and Chen [2]. (ii) is easy.

(2) For (iii), it follows from Li, Li & Chen [3] that
p(v) € C=([0,1)").
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Suppose that

p(@) =3 pgi k.

kez
Substituting the above expression of p(¥) into (2.3) yields

Z ijpﬂ VU —i—Zb Zpa'ﬁfg

lez? jeD JED  fez®?

(3) By using mathematical induction respect to [ 1, we can prove
pp= 0. 0
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we now consider the multi-birth property of {X(¢) : t > 0}.

As in the previous section, let D C Z, be a finite subset with
1 ¢ D. We also assume that by > 0 for all k& € D since there is no
individual giving (k — 1) offsprings if by = 0. For simplicity of
notation, we write the set {k —1:k € D} as D — 1 in the
following, i.e.,
D—-1={k—-1:ke D}.
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The main purpose of this talk is to analyze the (D — 1)-birth
numbers of {X (¢) : ¢ > 0}. For this purpose, we construct a new

Q-matrix Q = ((j(i )G (i,m), (j,1) € Zy x ZP), where

ji
Ui, ()
ibjip + a1, ifi>0,j-i+1€ D,l=m,

)by, if i>0j—i+1€D,l=m+é& i, (3.1)
i1, if i>0,j—i+1eD,l=1m, '
0, otherwise,

with {ay : kK > 0} and {b; : & > 0} given in (1.2).
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Let P(t) = (s ) (@) ¢ (1:77), (G, 1) € Zyy x Z%) be the Feller
minimal @—function. Define

Fa(taw,d) = Y BumapOwd, (u,) €0,1] x [0,1]7,
(jvf)GZ+XZE

where i = erDvé’“ for = (vy: k€ D)and [ = (I : k € D).
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Lemma 3.1.
Let Q be defined in (3.1) and P(t) = (5; ) (;.5(t)) be the Feller

minimal @—function. Then
(i) for any (i,m) € Zy x Z% and (u, ) € [0,1] x [0,1]7,

aFi’m(t,u,ﬁ) aFi’m(t,u,’D‘)

= [Bp(u) + Bp(u, )] -

ot ou
+A(u) - F; (¢, u, D). (3.2)
Moreover,
. o _ L, 0 .
F, m(t,u,¥) —u'd™ = [Bp(u)+ Bp(u,?)]- 8—Fiﬁ(t,u,v)
u
+A(u) - Fi (8, u, 0), (3:3)

where Bp(u), Bp(u, ) are as in (2.2), F; 7 (t, u,v) = ft

o Fi,m(s,u,v)ds.
(ii) @ is regular if and only if @ is regular.
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Sketch of proof. (1) By Kolmogorov forward equations,

) 2. P (i), iy (D'
(1) €24 x 2P

= [Bp(u) +Bp(w,d)]- D> By en(t) - ku T
(k, 7)€Ly xZY
AW D B (t) - ut T
(k,7)E€Ly x LY

Thus, (i) is proved.
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(2) Suppose Q@ is regular. By Li and Chen [1], we have p =1 or
that p < 1 and f; 7%1(2) = +oo for all € € (p,1). If p =1, then

let y = p(¥) in (3.3), we know that

Fy i (t, p(7),0) — p' (D)8 = A(p(D)) - Fi(t, p(0), D).

Then, letting ¥ T 1 in the above equality yields that @ is regular. If

p<1and fsl _gléu) = +oo for all € € (p,1). Using Laplace

transform, we can also get the conclusion.
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(3) Conversely, suppose that Q is regular. By the theory of Markov
chains (ﬁ(i ) (jf)(t) : (i,m), (4,1) € Z4 x ZP) can be obtained as
follows.

=< (0) t e s - (n—1)
- (t d(i,m) - . (t—3s)d
Priy, 55+ Jo e W)%:(i’m) Qo) ) Py (8 = 8)

5 - ( ) ANz D
p(i77ﬁ)7(j,l)( ) - nh—>oo (4,1, (4, l)( ) (%m)) (]al) € Z-i- X Z+7

Zp n > 0.

leZD

let

\_/l

It can be proved that fi(,?) (t,m) is dependent of m and converges
to the Feller minimal @-function, which implies that @ is regular.
O
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Since we have assumed that @ is regular, by Lemma 3.1, we can
see that Q determines a unique Q-process {(X (), Y (¢)) : t > 0},
where Y (t) = (Yj,(t) : k € D) counts the (D — 1)-birth number of
{X(t) : t > 0}. It follows from the proof of Lemma 3.1 that
{X(t):t >0} is the MBIP with generator @ and thus has the
same distribution as {X(¢) : t > 0}. Therefore, we still use

{X(t) : t > 0} to denote {X( ) :t > 0} in the following, i.e.,
{(X(t),Y(t)) : t > 0} is the Q-process, where {X(t) : t > 0} is
the MBIP and Y (t) = (Yj(t) : k € D) counts the (D — 1)-birth
number of {X(¢) : ¢ > 0}.
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In particular,

(i) if D = {0} then Y{(¢) counts the death number of

{X () : t > 0} until time ¢;

(it) if D = {i} (i > 2), then Y;(t) counts the (i — 1)-birth number
of {X(¢) : t > 0} until time ¢;

(ii)) if D = {0,i} (i > 2), then Y(t) = (Yy(t), Yi(t)) counts the
death number and the (i — 1)-birth number of {X(¢) : ¢ > 0} until
time ¢.
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Lemma 3.2.

For P(t), we have that for any (i,1m) € Z, x ZP and
(u,) € [0,1] x [0, 1]2,

Fy i (t,u, ) = [Fro(t,u, 0)]* - Fool(t,u, ) - 7™, (3.4)

where 7™ = [ v for 7= (v : k € D) and 11 = (my : k € D).
keD

Proof. Omitted.
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Now, denote

H(t,u,7) = Foo(t,u,v), (u,v)€[0,1] x[0,1)7,
G(t,u,7) = Fro(t,u,7), (u,v)€]0,1]x[0,1)P.

Suppose that (u,?) € [0,1] x [0,1)P. Then (H(t,u, ), G(t,u, 7))
is the unique solution of the system of differential equations

% = A(y),
% — z[Bp(y,9) + Bp(y) + yA(y)],

(3.5)
x ‘t:(): 17

Y lt=0= u.
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Sketch of proof. It can be proved by using Kolmogorov backward
equations and Lemma 3.2.
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Sketch of proof. It can be proved by using Kolmogorov backward
equations and Lemma 3.2.

The following theorem gives the joint probability generating

function of (D — 1)-birth numbers until time ¢, i.e., the joint
probability generating function of Y'(¢).

Li Junping



Conclusions
Conclusions

Theorem 3.1.
Suppose that {X(¢) : ¢ > 0} is an MBIP. Then the joint
probability generating function of Y (¢) is given by

U E
7 € [0,1]7,

{E[U:(t)\X(O) — 0] = H(t,1,7), #¢€[0,1]7,
0 1

where (H (t,u, v), G(t, u, ¥)) is the unique solution of (3.5).
In particular, if a; = 0, then

E[@Y(t”X(O) =1]=G(t1,v), 7€]0, 1]D

where G(t,u, ¥) is the unique solution of

(3.6)

{ay = Bp(y,7) + Bp(y)
Yli=0 = u.
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Furthermore,

where

9o(t) = G(t,1,0)
gm(t) = Bp(go(t) fo BD(go(s))dS m 70

with

Zb gm 61

€D

+D b 3 i () - gy (2)

i€D 1) .. T 2w, T 4 I =m

and {g"\" () : 1 € Z2} being the i'th convolution of {g,(t) : m € ZP}.
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Sketch of Proof. (1) By Lemmas 3.2 and 3.3, we can prove (i).
(2) Suppose that a; = 0. (3.5) becomes (3.6). we suppose that

G(t,1,5) = Y gdt)i

Te7D
lez?y

By (3.6), we get

90(t) = X p bigo(t) = Bp(go(t)), ) (3.7)
1) = Yiep bigr ) () + e p bigr (1), T#0. '
Hence, it can be proved that
5 . t Fi(s) o T
o0 = Boloel) | Bygorn ™ 17
O
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Remark 3.1.

(i) Generally, if X (t) starts from X (0) =i(> 1), then
E[77O|X(0) = ] = H(t,1,5) - [C(t, 1, 5)]".
(i) If a1 = 0, then by the proof of Theorem 3.1,

Gtud)= Y g 0T, (u,9)€0,1x[0,1)°,
(GD)€Z4 xZE

where g, i{t) = P(1,0),i3,0) (*).
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The following theorem gives a recursive algorithm of 9; i)

(1)

Let g;E (t) be the ith convolution of gj,;(t) and

Fip®) = > bigi (1)

€N

Y n ) 97, (0 9,7, (0).

GENT (1K) (LK) A R), S 1 (L oK )= (5,F)
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Theorem 3.2.

(i) If 0 € D or by = 0, then

g0.0(t) =0
9,1{t) = €"t[0;1070 + Jo F; ds)e%ds), (5,1) # (0,0).

(ii) If 0 ¢ D and by > 0, then

{go,o(t) = G(t,0,0)

n = t
9;i) = Bp(g0.0() - [95:1570%0 " + o Botm ooy

Fj,f(s) -

ds], (4,1) # (0,0),
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Sketch of proof. Suppose that

Gltut)= > ggtydit.

(4,k)EL 4 xZR

By (3.6),
Y gt = > Z big;,%’z (D't
(. R)ezy xZP (4,F) €2 xZP\{0} 1€D

D VI S0

(j,F)€Z4 xZP i€D
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Comparing the coefficients on the both sides yields

g =0 ;i +Zblg*£z ), (j, k) eZ¥ . (3.8)
€D i€D

goo (t) = G(t, 07 0)'
For (j,k) # (0,0), by (3.8),

¢ 1(0) = 9,50 Bp(go0(t)) + F (0. (3.9)
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(i) If 0 € D or by = 0, then by (3.8), it is easy to see that

goo(t) =0, Bp(goo(t)) = b1.

By (3.9),

t
9,7(t) = € [551070 + /0 F, p(s)e™"*ds).

(i) If 0 ¢ D and by > 0, then

I Bl (goo(s))ds _ Ji Bolao(s) 5502 5ds _ Bo(goo(t))

bo
Hence,

t F. (s .
9;;(t) = Bp(goo(t)) - [53‘,15,;701751 +/0 B,;)(];)i()s))ds]’ (J, k) # (0,0).
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Corollary 3.1.

Let {X (¢);t > 0} be an MBP with X (0) = 1. Then
Bph®|X(0) = 1] = G(t, 1,0), v e [0,1],

where G(t,u,v) is the unique solution of the equation

(Bomw om0y

y|t:0 = u,
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Corollary 3.2.

Let {X(t);t > 0} be an MBP with X(0) =1 and m(> 1) be
fixed. Then

Ep"™®|X(0)=1] = G(t,1,v), ve]0,1],

where G(t,u,v) is the unique solution of the equation

{‘3’2’ =B —bn(l=vl™ oy

y|t=0 =u,
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Let
T =1inf{t > 0: X(t) =0}

be the hitting time of 0 for X (¢).
By Theorem 3.1, we have

Let {X(¢) :t > 0} be an MBP with X (0) = 1. Then

E[,L—}»?(T)lT < OO] — p—l . p(ﬁ), v e [07 ]-]D7

where p is the minimal nonnegative root of B(u) = 0.
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Sketch of proof. (1) By Theorem 3.1 and (3.3) with ¢ =1 and
u = p(v), for Vt >0,

= Pao.0. v+Z pr G p(#)7)i.(3.10)

lez? lez® J=1

(2) Further prove that

G(o0, 1,7) =) P1.0),(05(00)7 ﬂi‘& > Zpu 0.6 (1)T (3.11)
lez? lez? J=1
and
_ _['
p(0) = Y Prrg) 01107 (312
lez?
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(3) By (3.11) and (3.12),
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Example 3.1. Let X (¢) be a birth-death type MBP with death
rate pb and birth rate ¢gb (here, b >0, p € (0,1),p+¢=1),
X(0) =1. Then

B(u) = b(p — u + qu?).

Proposition 3.1
Let Y(¢) be the death number of X(-) until ¢. Then

a(v) = A(v)

1+ 855 - elat)-Albat”

E[pY®] = B(v) +

RO T EL .
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Proposition 3.2.

Let Y(¢) be the death number of X(-) until ¢. Then
E[p"D|r < oo] = B(v),

where

n!

Bv) = p <v + i (2n — 312" (pg)"t vn) |
n—2
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Example 3.2. Let X (¢) be an MBP with by = pb and b3 = ¢b
(here, b>0, pe (0,1),p+¢q=1), X(0) =1. Then

B(u) = b(p — u + qu®).
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Proposition 3.3.

Let Y (¢) be the death number of X(-) until ¢. Then

EpY®] = Zgn(t)v”,
n=0

where

go(t) — (q+pe2bt)—1/2
gn(t) — 20t (q+p62bt)73/2 . fot 672bs(q +p62bs)3/2Fn(S)dS, n>1

with

F,(t) = bpdy , + bq - > Gy ()G (8) gis (1)
k1,k2,ks<n,k1+ka+ks=n
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