The multi-birth property of Markov branching processes with immigration

Li Junping Joint work with Li Y
\section*{Central South University}

18th Workshop on Markov Processes and Related Topics July, 30-Aug., 02, 2023,

Tianjing University.

Contents

(1) Background

Contents

(1) Background
(2) Preliminary

Contents

(1) Background
(2) Preliminary
(3) Conclusions

Contents

(1) Background
(2) Preliminary
(3) Conclusions

4 References

Contents

(1) Background
(2) Preliminary
(3) Conclusions

4 References
(5) Acknowledgements

Background

- Branching process

State space $\mathbb{Z}_{+}=\{0,1, \cdots\}$.

- Definition

A conservative Q-matrix $Q=\left(q_{i j} ; i, j \in \mathbb{Z}_{+}\right)$is called a branching-immigration Q-matrix if it takes the following form:

$$
q_{i j}= \begin{cases}i b_{j-i+1}+a_{j-i+1}, & \text { if } i \geq 0, j \geq i-1 \tag{1.1}\\ 0, & \text { otherwise },\end{cases}
$$

where

$$
\left\{\begin{array}{l}
a_{0}=0, a_{j} \geq 0(j \geq 2), 0<-a_{1}=\sum_{j=2}^{\infty} a_{j}<\infty, \tag{1.2}\\
b_{j} \geq 0(j \neq 1), 0<-b_{1}=\sum_{j \neq 1} b_{j}<\infty
\end{array}\right.
$$

Background

A Markov Branching-immigration process (simply, MBIP) is a continuous-time Markov chain taking values in \mathbb{Z}_{+}whose transition function $P(t)=\left(p_{i j}(t): i, j \in \mathbb{Z}_{+}\right)$satisfies the Kolmogorov equations

$$
\begin{equation*}
P^{\prime}(t)=P(t) Q, \tag{1.3}
\end{equation*}
$$

where Q is a branching Q-matrix.

Background

Li and Chen [1] presented the regularity criteria for Q defined in (1.1)-(1.2). We assume that the process Q is regular throughout this talk.
Let $\{X(t): t \geq 0\}$ denote the corresponding process and $P(t)=\left(p_{i j}(t): i, j \in \mathbb{Z}_{+}\right)$denote its transition function. Define

$$
F(t, u)=\sum_{j=0}^{\infty} p_{1 j}(t) u^{j}
$$

Background

- Problems:
(i) How many particles died until time t ?
(ii) What is the m-birth number of particles until time t (here $m \neq 0$ is a fixed integer) ?
(iii) How many particles who ever lived in the system (i.e., the total death number)?

Background

- Related conclusions:
(i) Weighted branching process: Li Y., Li J. and Chen A. (2021, Sciences in China: Mathematics, in Chinese)
(ii) Weighted Markov collision processes: Li Y., Li J. (2021, Front. Math. China, 16(2):525-542).

Preliminary

We first make some preliminaries. Suppose that D is a finite subset of \mathbb{Z}_{+}with $1 \notin D$. Let

$$
[0,1]^{D}=\left\{\vec{v}=\left(v_{k}: k \in D\right): v_{k} \in[0,1] \forall k \in D\right\}
$$

and

$$
\mathbb{Z}_{+}^{D}=\left\{\vec{l}=\left(l_{k}: k \in D\right): l_{k} \in \mathbb{Z}_{+} \forall k \in D\right\} .
$$

For simplicity of notations, in the following, we let 1 denote the vector in \mathbb{Z}_{+}^{D} whose components are all 1 and for $k \in D, \vec{e}_{k}$ denote the vector in \mathbb{Z}_{+}^{D} whose k 'th component is 1 and others are 0 .

Preliminary

Define

$$
\begin{equation*}
A(u)=\sum_{j=1}^{\infty} a_{j} u^{j-1}, \quad B(u)=\sum_{j=0}^{\infty} b_{j} u^{j} \tag{2.1}
\end{equation*}
$$

and

$$
\begin{equation*}
B_{D}(u, \vec{v})=\sum_{j \in D} b_{j} u^{j} \vec{v}^{\vec{e}_{j}}, \quad \bar{B}_{D}(u)=\sum_{j \in \bar{D}} b_{j} u^{j} \tag{2.2}
\end{equation*}
$$

for $u \in[0,1], \vec{v} \in[0,1]^{D}$, where $\vec{v}^{\vec{l}}=\prod_{k \in D} v_{k}^{l_{k}}$ for $\vec{v}=\left(v_{k}: k \in D\right)$,
$\vec{l}=\left(l_{k}: k \in D\right)$ and $\bar{D}=\mathbb{Z}_{+} \backslash D$.

Preliminary

Define

$$
\begin{equation*}
A(u)=\sum_{j=1}^{\infty} a_{j} u^{j-1}, \quad B(u)=\sum_{j=0}^{\infty} b_{j} u^{j} \tag{2.1}
\end{equation*}
$$

and

$$
\begin{equation*}
B_{D}(u, \vec{v})=\sum_{j \in D} b_{j} u^{j} \vec{v}^{\vec{e}_{j}}, \quad \bar{B}_{D}(u)=\sum_{j \in \bar{D}} b_{j} u^{j} \tag{2.2}
\end{equation*}
$$

for $u \in[0,1], \vec{v} \in[0,1]^{D}$, where $\vec{v}^{\vec{l}}=\prod_{k \in D} v_{k}^{l_{k}}$ for $\vec{v}=\left(v_{k}: k \in D\right)$,
$\vec{l}=\left(l_{k}: k \in D\right)$ and $\bar{D}=\mathbb{Z}_{+} \backslash D$.
It is obvious that $B(u), \bar{B}_{D}(u)$ are well defined at least on $[0,1]$, and $B_{D}(u, \vec{v})$ is well defined at least on $[0,1] \times[0,1]^{D}$.

Preliminary

The following theorem reveals the properties of $\bar{B}_{D}(u)+B_{D}(u, \vec{v})$.

Theorem 2.1.

(i) For any $\vec{v} \in[0,1]^{D}$,

$$
\begin{equation*}
\bar{B}_{D}(u)+B_{D}(u, \vec{v})=0 \tag{2.3}
\end{equation*}
$$

has at most 2 roots in $[0,1]$. The minimal nonnegative root $\rho(\vec{v}) \leq \rho$, where ρ is the minimal nonnegative root of $B(u)=0$.
(ii) $\lim _{\vec{v} \uparrow 1} \rho(\vec{v})=\rho$, where $\vec{v} \uparrow \mathbf{1}$ means $v_{k} \uparrow 1(k \in D)$.
(iii) $\rho(\vec{v}) \in C^{\infty}\left([0,1)^{D}\right)$ and $\rho(\vec{v})$ can be expanded as

$$
\rho(\vec{v})=\sum_{\vec{l} \in \mathbb{Z}_{+}^{D}} \rho_{\vec{l}} \vec{v} \vec{l}
$$

where $\rho_{\vec{l}} \geq 0$ for all $\vec{l} \in \mathbb{Z}_{+}^{D}$.

Preliminary

Sketch of proof.

(1) Since $0 \leq B_{D}(u, \mathbf{0}) \leq B_{D}(u, \vec{v}) \leq B_{D}(u, \mathbf{1})$, (i) follows from Li and Chen [2]. (ii) is easy.
(2) For (iii), it follows from $\mathrm{Li}, \mathrm{Li} \&$ Chen [3] that $\rho(\vec{v}) \in C^{\infty}\left([0,1)^{D}\right)$.

Preliminary

Suppose that

$$
\rho(\vec{v})=\sum_{\vec{k} \in \mathbb{Z}_{+}^{N}} \rho_{\vec{k}} \vec{v} \vec{k} .
$$

Substituting the above expression of $\rho(\vec{v})$ into (2.3) yields

$$
0 \equiv \sum_{\vec{l} \in \mathbb{Z}_{+}^{D}}\left(\sum_{j \in \bar{D}} b_{j} \rho_{\vec{l}}^{*(j)}\right) \vec{v}^{\vec{l}}+\sum_{j \in D} b_{j} \sum_{\vec{l} \in \mathbb{Z}_{+}^{D}} \rho_{\vec{l}}^{*(j)} \vec{v} \vec{l}+\vec{e}_{j} .
$$

(3) By using mathematical induction respect to $\vec{l} \cdot \mathbf{1}$, we can prove $\rho_{\vec{l}} \geq 0$.

Conclusions

we now consider the multi-birth property of $\{X(t): t \geq 0\}$.

As in the previous section, let $D \subset \mathbb{Z}_{+}$be a finite subset with $1 \notin D$. We also assume that $b_{k}>0$ for all $k \in D$ since there is no individual giving $(k-1)$ offsprings if $b_{k}=0$. For simplicity of notation, we write the set $\{k-1: k \in D\}$ as $D-1$ in the following, i.e.,

$$
D-1=\{k-1: k \in D\} .
$$

Conclusions

The main purpose of this talk is to analyze the ($D-1$)-birth numbers of $\{X(t): t \geq 0\}$. For this purpose, we construct a new Q-matrix $\widetilde{Q}=\left(\tilde{q}_{(i, \vec{m}),(j, \vec{l})}:(i, \vec{m}),(j, \vec{l}) \in \mathbb{Z}_{+} \times \mathbb{Z}_{+}^{D}\right)$, where

$$
\begin{align*}
& \tilde{q}_{(i, \vec{m}),(j, \vec{l})} \\
& = \begin{cases}i b_{j-i+1}+a_{j-i+1}, & \text { if } i \geq 0, j-i+1 \in \bar{D}, \vec{l}=\vec{m}, \\
i b_{j-i+1}, & \text { if } i \geq 0, j-i+1 \in D, \vec{l}=\vec{m}+\vec{e}_{j-i+1}, \\
a_{j-i+1}, & \text { if } i \geq 0, j-i+1 \in D, \vec{l}=\vec{m}, \\
0, & \text { otherwise },\end{cases} \tag{3.1}
\end{align*}
$$

with $\left\{a_{k}: k \geq 0\right\}$ and $\left\{b_{k}: k \geq 0\right\}$ given in (1.2).

Conclusions

Let $\widetilde{P}(t)=\left(\tilde{p}_{(i, \vec{m}),(j, \vec{l})}(t):(i, \vec{m}),(j, \vec{l}) \in \mathbb{Z}_{+} \times \mathbb{Z}_{+}^{D}\right)$ be the Feller minimal \widetilde{Q}-function. Define
$F_{i, \vec{m}}(t, u, \vec{v})=\sum \tilde{p}_{(i, \vec{m}),(j, \vec{l})}(t) u^{j} \vec{v}^{\vec{l}}, \quad(u, \vec{v}) \in[0,1] \times[0,1]^{D}$, $(j, \vec{l}) \in \mathbb{Z}_{+} \times \mathbb{Z}_{+}^{D}$
where $\vec{v} \vec{l}=\prod_{k \in D} v_{k}^{l_{k}}$ for $\vec{v}=\left(v_{k}: k \in D\right)$ and $\vec{l}=\left(l_{k}: k \in D\right)$.

Lemma 3.1.

Let \widetilde{Q} be defined in (3.1) and $\widetilde{P}(t)=\left(\tilde{p}_{(i, \vec{m}),(j, \vec{l})}(t)\right)$ be the Feller minimal \widetilde{Q}-function. Then
(i) for any $(i, \vec{m}) \in \mathbb{Z}_{+} \times \mathbb{Z}_{+}^{D}$ and $(u, \vec{v}) \in[0,1] \times[0,1]^{D}$,

$$
\begin{align*}
\frac{\partial F_{i, \vec{m}}(t, u, \vec{v})}{\partial t}= & {\left[\bar{B}_{D}(u)+B_{D}(u, \vec{v})\right] \cdot \frac{\partial F_{i, \vec{m}}(t, u, \vec{v})}{\partial u} } \\
& +A(u) \cdot F_{i, \vec{m}}(t, u, \vec{v}) \tag{3.2}
\end{align*}
$$

Moreover,

$$
\begin{align*}
F_{i, \vec{m}}(t, u, \vec{v})-u^{i} \vec{v}^{\vec{m}}= & {\left[\bar{B}_{D}(u)+B_{D}(u, \vec{v})\right] \cdot \frac{\partial}{\partial u} \mathbb{F}_{i, \vec{m}}(t, u, \vec{v}) } \\
& +A(u) \cdot \mathbb{F}_{i, \vec{m}}(t, u, \vec{v}) \tag{3.3}
\end{align*}
$$

where $\bar{B}_{D}(u), B_{D}(u, \vec{v})$ are as in $(2.2), \mathbb{F}_{i, \vec{m}}(t, u, \vec{v})=\int_{0}^{t} F_{i, \vec{m}}(s, u, \vec{v}) d s$. (ii) \widetilde{Q} is regular if and only if Q is regular.

Conclusions

Sketch of proof. (1) By Kolmogorov forward equations,

$$
\begin{aligned}
& \sum_{(j, \vec{l}) \in \mathbb{Z}_{+} \times \mathbb{Z}_{+}^{D}} \tilde{p}_{(i, \vec{m}),(j, \vec{l})}^{\prime}(t) u^{j} \vec{v}^{\vec{l}} \\
= & {\left[\bar{B}_{D}(u)+B_{D}(u, \vec{v})\right] \cdot \sum_{(k, \vec{r}) \in \mathbb{Z}_{+} \times \mathbb{Z}_{+}^{D}} \tilde{p}_{(i, \vec{m}),(k, \vec{r})}(t) \cdot k u^{k-1} \vec{v}^{\vec{r}} } \\
& +A(u) \cdot \sum_{(k, \vec{r}) \in \mathbb{Z}_{+} \times \mathbb{Z}_{+}^{D}} \tilde{p}_{(i, \vec{m}),(k, \vec{r})}(t) \cdot u^{k} \vec{v}^{\vec{r}} .
\end{aligned}
$$

Thus, (i) is proved.

Conclusions

(2) Suppose Q is regular. By Li and Chen [1], we have $\rho=1$ or that $\rho<1$ and $\int_{\varepsilon}^{1} \frac{d u}{-B(u)}=+\infty$ for all $\varepsilon \in(\rho, 1)$. If $\rho=1$, then let $y=\rho(\vec{v})$ in (3.3), we know that

$$
F_{i, \vec{m}}(t, \rho(\vec{v}), \vec{v})-\rho^{i}(\vec{v}) \vec{v}^{\vec{m}}=A(\rho(\vec{v})) \cdot \mathbb{F}_{i, \vec{m}}(t, \rho(\vec{v}), \vec{v}) .
$$

Then, letting $\vec{v} \uparrow \mathbf{1}$ in the above equality yields that \widetilde{Q} is regular. If $\rho<1$ and $\int_{\varepsilon}^{1} \frac{d u}{-B(u)}=+\infty$ for all $\varepsilon \in(\rho, 1)$. Using Laplace transform, we can also get the conclusion.

Conclusions

(3) Conversely, suppose that \widetilde{Q} is regular. By the theory of Markov chains $\left(\tilde{p}_{(i, \vec{m}),(j, \vec{l})}(t):(i, \vec{m}),(j, \vec{l}) \in \mathbb{Z}_{+} \times \mathbb{Z}_{+}^{D}\right)$ can be obtained as follows.

$$
\begin{aligned}
& \tilde{p}_{(i, \vec{m}),(j, \vec{l})}^{(n)}(t) \\
= & \left\{\begin{array}{l}
\delta_{(i, \vec{m}),(j, \vec{l})}^{e^{-\tilde{q}_{(i, \vec{m})} t},} \begin{array}{rl}
\tilde{p}_{(i, \vec{m}),(j, \vec{l})}^{(0)}(t)+\int_{0}^{t} e^{-\tilde{q}_{(i, \vec{m})} s} \sum_{(k, \vec{r}) \neq(i, \vec{m})} \tilde{q}_{(i, \vec{m}),(k, \vec{r})} \cdot \tilde{p}_{(k, \vec{r}),(j, \vec{l})}^{(n-1)}(t-s) d s,
\end{array} \\
\tilde{p}_{(i, \vec{m}),(j, \vec{l})}(t)=\lim _{n \rightarrow \infty} \tilde{p}_{(i, \vec{m}),(j, \vec{l})}^{(n)}(t), \quad(i, \vec{m}),(j, \vec{l}) \in \mathbb{Z}_{+} \times \mathbb{Z}_{+}^{D},
\end{array}\right.
\end{aligned}
$$

let

$$
f_{i, j}^{(n)}(t, \vec{m})=\sum_{\vec{l} \in \mathbb{Z}_{+}^{D}} \tilde{p}_{(i, \vec{m}),(j, \vec{l})}^{(n)}(t), \quad n \geq 0 .
$$

It can be proved that $f_{i, j}^{(n)}(t, \vec{m})$ is dependent of \vec{m} and converges to the Feller minimal Q-function, which implies that Q is regular.

Conclusions

Since we have assumed that Q is regular, by Lemma 3.1, we can see that \widetilde{Q} determines a unique \widetilde{Q}-process $\{(\tilde{X}(t), \vec{Y}(t)): t \geq 0\}$, where $\vec{Y}(t)=\left(Y_{k}(t): k \in D\right)$ counts the ($D-1$)-birth number of $\{\tilde{X}(t): t \geq 0\}$. It follows from the proof of Lemma 3.1 that $\{\tilde{X}(t): t \geq 0\}$ is the MBIP with generator Q and thus has the same distribution as $\{X(t): t \geq 0\}$. Therefore, we still use $\{X(t): t \geq 0\}$ to denote $\{\tilde{X}(t): t \geq 0\}$ in the following, i.e., $\{(X(t), \vec{Y}(t)): t \geq 0\}$ is the \widetilde{Q}-process, where $\{X(t): t \geq 0\}$ is the MBIP and $\vec{Y}(t)=\left(Y_{k}(t): k \in D\right)$ counts the $(D-1)$-birth number of $\{X(t): t \geq 0\}$.

Conclusions

In particular,
(i) if $D=\{0\}$ then $Y_{0}(t)$ counts the death number of $\{X(t): t \geq 0\}$ until time t;
(ii) if $D=\{i\}(i \geq 2)$, then $Y_{i}(t)$ counts the $(i-1)$-birth number of $\{X(t): t \geq 0\}$ until time t;
(iii) if $D=\{0, i\}(i \geq 2)$, then $\vec{Y}(t)=\left(Y_{0}(t), Y_{i}(t)\right)$ counts the death number and the $(i-1)$-birth number of $\{X(t): t \geq 0\}$ until time t.

Conclusions

Lemma 3.2.

For $\widetilde{P}(t)$, we have that for any $(i, \vec{m}) \in \mathbb{Z}_{+} \times \mathbb{Z}_{+}^{D}$ and $(u, \vec{v}) \in[0,1] \times[0,1]^{D}$,

$$
\begin{equation*}
F_{i, \vec{m}}(t, u, \vec{v})=\left[F_{1, \mathbf{0}}(t, u, \vec{v})\right]^{i} \cdot F_{0, \mathbf{0}}(t, u, \vec{v}) \cdot \vec{v}^{\vec{m}} \tag{3.4}
\end{equation*}
$$

where $\vec{v}^{\vec{m}}=\prod_{k \in D} v_{k}^{m_{k}}$ for $\vec{v}=\left(v_{k}: k \in D\right)$ and $\vec{m}=\left(m_{k}: k \in D\right)$.
Proof. Omitted.

Conclusions

Now, denote

$$
\begin{cases}H(t, u, \vec{v})=F_{0, \mathbf{0}}(t, u, \vec{v}), & (u, \vec{v}) \in[0,1] \times[0,1)^{D} \\ G(t, u, \vec{v})=F_{1, \mathbf{0}}(t, u, \vec{v}), & (u, \vec{v}) \in[0,1] \times[0,1)^{D}\end{cases}
$$

Lemma 3.3.

Suppose that $(u, \vec{v}) \in[0,1] \times[0,1)^{D}$. Then $(H(t, u, \vec{v}), G(t, u, \vec{v}))$ is the unique solution of the system of differential equations

$$
\left\{\begin{array}{l}
\frac{\partial x}{\partial t}=x A(y) \tag{3.5}\\
\frac{\partial y}{\partial t}=x\left[B_{D}(y, \vec{v})+\bar{B}_{D}(y)+y A(y)\right] \\
\left.x\right|_{t=0}=1 \\
\left.y\right|_{t=0}=u
\end{array}\right.
$$

Conclusions

Sketch of proof. It can be proved by using Kolmogorov backward equations and Lemma 3.2.

Conclusions

Sketch of proof. It can be proved by using Kolmogorov backward equations and Lemma 3.2.

The following theorem gives the joint probability generating function of $(D-1)$-birth numbers until time t, i.e., the joint probability generating function of $\vec{Y}(t)$.

Conclusions

Theorem 3.1.

Suppose that $\{X(t): t \geq 0\}$ is an MBIP. Then the joint probability generating function of $\vec{Y}(t)$ is given by

$$
\begin{cases}E\left[\vec{v}^{\vec{Y}}(t) \mid X(0)=0\right]=H(t, 1, \vec{v}), & \vec{v} \in[0,1]^{D}, \\ E\left[\vec{v}^{\vec{Y}}(t) \mid X(0)=1\right]=G(t, 1, \vec{v}), & \vec{v} \in[0,1]^{D}\end{cases}
$$

where $(H(t, u, \vec{v}), G(t, u, \vec{v}))$ is the unique solution of (3.5).
In particular, if $a_{1}=0$, then

$$
E\left[\vec{v}^{\vec{Y}(t)} \mid X(0)=1\right]=G(t, 1, \vec{v}), \quad \vec{v} \in[0,1]^{D}
$$

where $G(t, u, \vec{v})$ is the unique solution of

$$
\left\{\begin{array}{l}
\frac{\partial y}{\partial t}=B_{D}(y, \vec{v})+\bar{B}_{D}(y) \tag{3.6}\\
\left.y\right|_{t=0}=u .
\end{array}\right.
$$

Conclusions

Furthermore,

$$
P(\vec{Y}(t)=\vec{m} \mid X(0)=1)=g_{\vec{m}}(t) \forall \vec{m} \in \mathbb{Z}_{+}^{D},
$$

where

$$
\left\{\begin{array}{l}
g_{\mathbf{0}}(t)=G(t, 1, \mathbf{0}) \\
g_{\vec{m}}(t)=\bar{B}_{D}\left(g_{\mathbf{0}}(t)\right) \cdot \int_{0}^{t} \frac{F_{\vec{m}(s)}}{\bar{B}_{D}\left(g_{\mathbf{0}}(s)\right)} d s, \vec{m} \neq \mathbf{0}
\end{array}\right.
$$

with

$$
\begin{aligned}
F_{\vec{m}^{\prime}}(t)= & \sum_{i \in D} b_{i} \cdot g_{\vec{m}-\vec{l}_{i}}^{*(i)}(t) \\
& +\sum_{i \in \bar{D}} b_{i} \cdot \sum_{\vec{l}^{(1)}, \ldots, \vec{l}^{(i)} \neq \vec{m}, \vec{l}^{(1)}+\cdots+\vec{l}^{(i)}=\vec{m}} g_{\vec{l}^{(1)}}(t) \cdots g_{\vec{l}^{(i)}}(t)
\end{aligned}
$$

and $\left\{g_{\vec{m}}^{*(i)}(t): \vec{m} \in \mathbb{Z}_{+}^{D}\right\}$ being the i 'th convolution of $\left\{g_{\vec{m}}(t): \vec{m} \in \mathbb{Z}_{+}^{D}\right\}$.

Conclusions

Sketch of Proof. (1) By Lemmas 3.2 and 3.3, we can prove (i). (2) Suppose that $a_{1}=0$. (3.5) becomes (3.6). we suppose that

$$
G(t, 1, \vec{v})=\sum_{\vec{l} \in \mathbb{Z}_{+}^{D}} g_{\vec{l}}(t) \vec{v}^{l} .
$$

By (3.6), we get

$$
\left\{\begin{array}{l}
g_{\mathbf{0}}^{\prime}(t)=\sum_{i \in \bar{D}} b_{i} g_{\mathbf{0}}^{i}(t)=\bar{B}_{D}\left(g_{\mathbf{0}}(t)\right), \tag{3.7}\\
g_{\vec{l}}^{\prime}(t)=\sum_{i \in D} b_{i} g_{\vec{l}-\vec{e}_{i}}^{*(i)}(t)+\sum_{i \in \bar{D}} b_{i} g_{\vec{l}}^{*(i)}(t), \quad \vec{l} \neq \mathbf{0} .
\end{array}\right.
$$

Hence, it can be proved that

$$
g_{\bar{l}}(t)=\bar{B}_{D}\left(g_{\mathbf{0}}(t)\right) \cdot \int_{0}^{t} \frac{F_{\vec{l}}(s)}{\bar{B}_{D}\left(g_{\mathbf{0}}(s)\right)} d s, \quad \vec{l} \neq \mathbf{0} .
$$

Conclusions

Remark 3.1.

(i) Generally, if $X(t)$ starts from $X(0)=i(>1)$, then

$$
E\left[\vec{v}^{\vec{Y}}(t) \mid X(0)=i\right]=H(t, 1, \vec{v}) \cdot[G(t, 1, \vec{v})]^{i}
$$

(ii) If $a_{1}=0$, then by the proof of Theorem 3.1,

$$
G(t, u, \vec{v})=\sum_{(j, \vec{l}) \in \mathbb{Z}_{+} \times \mathbb{Z}_{+}^{D}} g_{j, \vec{l}}(t) u^{j} \vec{v}^{\vec{l}}, \quad(u, \vec{v}) \in[0,1] \times[0,1)^{D},
$$

where $g_{j, \vec{l}}(t)=p_{(1, \mathbf{0}),(j, \vec{l})}(t)$.

Conclusions

The following theorem gives a recursive algorithm of $g_{j, \vec{l}}(t)$.
Let $g_{j \vec{k}}^{*(i)}(t)$ be the i th convolution of $g_{j \vec{k}}(t)$ and

$$
\begin{aligned}
F_{j, \vec{k}}(t)= & \sum_{i \in \mathbb{N}} b_{i} g_{j \vec{k}-\vec{e}_{i}}^{*(i)}(t) \\
& +\sum_{i \in \mathbb{N}^{c}} b_{i} \sum_{\left(l_{1}, \vec{k}_{1}\right), \cdots,\left(l_{i}, \vec{k}_{i}\right) \neq(j, \vec{k}), \sum_{m=1}^{i}\left(l_{m}, \vec{k}_{m}\right)=(j, \vec{k})} g_{l_{1} \vec{k}_{1}}(t) \cdots g_{l_{i} \vec{k}_{i}}(t) .
\end{aligned}
$$

Conclusions

Theorem 3.2.

(i) If $0 \in D$ or $b_{0}=0$, then

$$
\left\{\begin{array}{l}
g_{0, \mathbf{0}}(t)=0 \\
g_{j, \vec{l}}(t)=e^{b_{1} t}\left[\delta_{j, 1} \delta_{\vec{l}, \mathbf{0}}+\int_{0}^{t} F_{j, \vec{l}}(s) e^{-b_{1} s} d s\right], \quad(j, \vec{l}) \neq(0, \mathbf{0})
\end{array}\right.
$$

(ii) If $0 \notin D$ and $b_{0}>0$, then

$$
\left\{\begin{array}{l}
g_{0, \mathbf{0}}(t)=G(t, 0, \mathbf{0}) \\
g_{j, \vec{l}}(t)=\bar{B}_{D}\left(g_{0, \mathbf{0}}(t)\right) \cdot\left[\delta_{j, 1} \delta_{\vec{l}, \mathbf{0}} b_{0}^{-1}+\int_{0}^{t} \frac{F_{j, \bar{l}}(s)}{\bar{B}_{D}\left(g_{0}, \mathbf{0}(s)\right)}\right.
\end{array} d s\right], \quad(j, \vec{l}) \neq(0, \mathbf{0}),
$$

Conclusions

Sketch of proof. Suppose that

$$
G(t, u, \vec{v})=\sum_{(j, \vec{k}) \in \mathbb{Z}_{+} \times \mathbb{Z}_{+}^{D}} g_{j \vec{k}}(t) u^{j} \vec{v}^{\vec{k}}
$$

By (3.6),

$$
\begin{aligned}
\sum_{(j, \vec{k}) \in \mathbb{Z}_{+} \times \mathbb{Z}_{+}^{D}} g_{j \vec{k}}^{\prime}(t) u^{j} \vec{v}^{\vec{k}}= & \sum_{(j, \vec{k}) \in \mathbb{Z}_{+} \times \mathbb{Z}_{+}^{D} \backslash\{\mathbf{0}\}} \sum_{i \in D} b_{i} g_{j \vec{k}-\vec{e}_{i}}^{*(i)}(t) u^{j} \vec{v}^{\vec{k}} \\
& +\sum_{(j, \vec{k}) \in \mathbb{Z}_{+} \times \mathbb{Z}_{+}^{D}} \sum_{i \in \bar{D}} b_{i} g_{j \vec{k}}^{*(i)}(t) u^{j} \vec{v}^{\vec{k}} .
\end{aligned}
$$

Conclusions

Comparing the coefficients on the both sides yields

$$
\begin{equation*}
g_{j \vec{k}}^{\prime}(t)=\sum_{i \in D} b_{i} g_{j \vec{k}-\vec{e}_{i}}^{*(i)}(t)+\sum_{i \in \bar{D}} b_{i} g_{j \vec{k}}^{*(i)}(t), \quad(j, \vec{k}) \in \mathbb{Z}_{+}^{N+1} \tag{3.8}
\end{equation*}
$$

Hence,

$$
g_{0 \mathbf{0}}(t)=G(t, 0, \mathbf{0})
$$

For $(j, \vec{k}) \neq(0, \mathbf{0})$, by (3.8),

$$
\begin{equation*}
g_{j \vec{k}}^{\prime}(t)=g_{j \vec{k}}(t) \bar{B}_{D}^{\prime}\left(g_{00}(t)\right)+F_{j, \vec{k}}(t) \tag{3.9}
\end{equation*}
$$

(i) If $0 \in D$ or $b_{0}=0$, then by (3.8), it is easy to see that

$$
g_{0 \mathbf{0}}(t)=0, \quad \bar{B}_{D}^{\prime}\left(g_{0 \mathbf{0}}(t)\right)=b_{1} .
$$

By (3.9),

$$
g_{j \vec{k}}(t)=e^{b_{1} t}\left[\delta_{j, 1} \delta_{\vec{k}, \mathbf{0}}+\int_{0}^{t} F_{j, \vec{k}}(s) e^{-b_{1} s} d s\right] .
$$

(ii) If $0 \notin D$ and $b_{0}>0$, then

$$
e^{\int_{0}^{t} \bar{B}_{D}^{\prime}\left(g_{0 \mathbf{0}}(s)\right) d s}=e^{\int_{0}^{t} \bar{B}_{D}^{\prime}\left(g_{0 \mathbf{0}}(s)\right) \cdot \frac{g_{0 \mathbf{0}}^{\prime}(s)}{\bar{B}_{D}\left(g_{0 \mathbf{0}(}(s)\right)} d s}=\frac{\bar{B}_{D}\left(g_{0 \mathbf{0}}(t)\right)}{b_{0}}
$$

Hence,

$$
g_{j \vec{k}}(t)=\bar{B}_{D}\left(g_{0 \mathbf{0}}(t)\right) \cdot\left[\delta_{j, 1} \delta_{\vec{k}, \mathbf{0}} b_{0}^{-1}+\int_{0}^{t} \frac{F_{j, \vec{k}}(s)}{\bar{B}_{D}\left(g_{0 \mathbf{0}}(s)\right)} d s\right], \quad(j, \vec{k}) \neq(0, \mathbf{0})
$$

Conclusions

Corollary 3.1.

Let $\{X(t) ; t \geq 0\}$ be an MBP with $X(0)=1$. Then

$$
E\left[v^{Y_{0}(t)} \mid X(0)=1\right]=G(t, 1, v), \quad v \in[0,1]
$$

where $G(t, u, v)$ is the unique solution of the equation

$$
\left\{\begin{array}{l}
\frac{\partial y}{\partial t}=B(y)-b_{0}(1-v), \\
\left.y\right|_{t=0}=u,
\end{array} \quad u, v \in[0,1] .\right.
$$

Conclusions

Corollary 3.2.

Let $\{X(t) ; t \geq 0\}$ be an MBP with $X(0)=1$ and $m(>1)$ be fixed. Then

$$
E\left[v^{Y_{m}(t)} \mid X(0)=1\right]=G(t, 1, v), \quad v \in[0,1]
$$

where $G(t, u, v)$ is the unique solution of the equation

$$
\left\{\begin{array}{l}
\frac{\partial y}{\partial t}=B(y)-b_{m}(1-v) y^{m}, \\
\left.y\right|_{t=0}=u,
\end{array} \quad u, v \in[0,1]\right.
$$

Conclusions

Let

$$
\tau=\inf \{t \geq 0: X(t)=0\}
$$

be the hitting time of 0 for $X(t)$.
By Theorem 3.1, we have

Theorem 3.3.

Let $\{X(t): t \geq 0\}$ be an MBP with $X(0)=1$. Then

$$
E\left[\vec{v}^{\vec{Y}(\tau)} \mid \tau<\infty\right]=\rho^{-1} \cdot \rho(\vec{v}), \quad \vec{v} \in[0,1]^{D},
$$

where ρ is the minimal nonnegative root of $B(u)=0$.

Conclusions

Sketch of proof. (1) By Theorem 3.1 and (3.3) with $i=1$ and $u=\rho(\vec{v})$, for $\forall t \geq 0$,

$$
\rho(\vec{v})=\sum_{\vec{l} \in \mathbb{Z}_{+}^{D}} p_{(1, \mathbf{0}),(0, \vec{l})}(t) \vec{v}^{\vec{l}}+\sum_{\vec{l} \in \mathbb{Z}_{+}^{D}}\left(\sum_{j=1}^{\infty} p_{(1, \mathbf{0}),(j, \vec{l})}(t) \rho(\vec{v})^{j}\right) \vec{v}^{\vec{l}} \cdot(3.10)
$$

(2) Further prove that

$$
G(\infty, 1, \vec{v})=\sum_{\vec{l} \in \mathbb{Z}_{+}^{D}} p_{(1, \mathbf{0}),(0, \vec{l})}(\infty) \vec{v}^{\vec{l}}+\lim _{t \rightarrow \infty} \sum_{\vec{l} \in \mathbb{Z}_{+}^{D}}\left(\sum_{j=1}^{\infty} p_{(1, \mathbf{0}),(j, \vec{l})}(t)\right) \vec{v}^{\vec{l}}(3.11)
$$

and

$$
\begin{equation*}
\rho(\vec{v})=\sum_{\vec{l} \in \mathbb{Z}_{+}^{D}} p_{(1, \mathbf{0}),(0, \vec{l})}(\infty) \vec{v}^{\vec{l}} . \tag{3.12}
\end{equation*}
$$

Conclusions

(3) $\mathrm{By}(3.11)$ and (3.12),

$$
G(\vec{v})=\sum_{\vec{l} \in \mathbb{Z}_{+}^{D}} P(\vec{Y}(\tau)=\vec{l} \mid \tau<\infty) \cdot \vec{v}^{\vec{l}}=\rho^{-1} \cdot \rho(\vec{v})
$$

and

$$
P(\vec{Y}(\tau) \leq \vec{l} \mid \tau=\infty)=(1-\rho)^{-1} \cdot \lim _{t \rightarrow \infty} \sum_{\vec{m} \leq \vec{l}} \sum_{j=1}^{\infty} p_{(1, \mathbf{0}),(j, \vec{m})}(t)=0
$$

Examples

Example 3.1. Let $X(t)$ be a birth-death type MBP with death rate $p b$ and birth rate $q b$ (here, $b>0, p \in(0,1), p+q=1$), $X(0)=1$. Then

$$
B(u)=b\left(p-u+q u^{2}\right) .
$$

Proposition 3.1.

Let $Y(t)$ be the death number of $X(\cdot)$ until t. Then

$$
E\left[v^{Y(t)}\right]=\beta(v)+\frac{\alpha(v)-\beta(v)}{1+\frac{\alpha(v)-1}{1-\beta(v)} \cdot e^{[\alpha(v)-\beta(v)] b q t}},
$$

where

$$
\alpha(v)=\frac{1+\sqrt{1-4 p q v}}{2 q}, \quad \beta(v)=\frac{1-\sqrt{1-4 p q v}}{2 q} .
$$

Examples

Proposition 3.2.

Let $Y(t)$ be the death number of $X(\cdot)$ until t. Then

$$
E\left[v^{Y(\tau)} \mid \tau<\infty\right]=\beta(v)
$$

where

$$
\beta(v)=p\left(v+\sum_{n=2}^{\infty} \frac{(2 n-3)!!2^{n-1}(p q)^{n-1}}{n!} v^{n}\right) .
$$

Examples

Example 3.2. Let $X(t)$ be an MBP with $b_{0}=p b$ and $b_{3}=q b$ (here, $b>0, p \in(0,1), p+q=1), X(0)=1$. Then

$$
B(u)=b\left(p-u+q u^{3}\right)
$$

Examples

Proposition 3.3.

Let $Y(t)$ be the death number of $X(\cdot)$ until t. Then

$$
E\left[v^{Y(t)}\right]=\sum_{n=0}^{\infty} g_{n}(t) v^{n}
$$

where

$$
\left\{\begin{array}{l}
g_{0}(t)=\left(q+p e^{2 b t}\right)^{-1 / 2} \\
g_{n}(t)=e^{2 b t} \cdot\left(q+p e^{2 b t}\right)^{-3 / 2} \cdot \int_{0}^{t} e^{-2 b s}\left(q+p e^{2 b s}\right)^{3 / 2} F_{n}(s) d s, n \geq 1
\end{array}\right.
$$

with

$$
F_{n}(t)=b p \delta_{1, n}+b q . \sum_{k_{1}, k_{2}, k_{3}<n, k_{1}+k_{2}+k_{3}=n} g_{k_{1}}(t) g_{k_{2}}(t) g_{k_{3}}(t) .
$$

References

Anderson W.(1991).
Continuous-Time Markov Chains: An Applications-Oriented Approach.
Springer-Verlag, New York.

Asmussen S. and Jagers P.(1997).
Classical and Mordern Branching Processes, Sptinger, Berlin.

Asmussen S. and Hering H.(1983).
Branching Processes.
Birkhauser, Boston.

Athreya K.B.(1994).
Large Deviation Rates for Branching Processes-I. Single Type Case.
The Annals of Appl. Probab., 4(3):779-790.Athreya K.B. and Ney P.E.(1972).
Branching Processes.
Springer, Berlin.

References

Then A.Y.(2002).
Uniqueness and extinction properties of generalised Markov branching processes.
J. Math. Anal. Appl., 274(2):482-494Chen A.Y.(2002).
Ergodicity and stability of generalised Markov branching processes with resurrection.
J. Appl. Probab., 39(4):786-803
\square Chen A.Y. and Li J.P. and Ramesh N.(2005).
Uniqueness and extinction of weighted Markov branching processes.
Methodol. Comput. Appl. Probab., 7(4):489-516Chen A.Y. and Pollett P. and Li J.P. and Zhang H.J.(2007).
A remark on the uniqueness of weighted Markov branching processes.
J. Appl. Probab., 44(1):279-283Harris T.E.(1963).
The theory of branching processes.
Springer, Berlin and Newyork.

References

Li J.P. \& Chen A.Y.
Markov branching processes with immigration and resurrection.
Markov Process. Related Fields, 12(1):139-168 (2006).Li J.P. and Chen A.Y.(2008).
Decay property of stopped Markovian Bulk-arriving queues.
Adv. Appl. Probab., 40(1):95-121.Li Y.Y., Li J.P. \& Chen A.Y.
The down/up crossing properties of weighted Markov branching processes (in Chinese).

Scientia Sinica Mathematica, 52(4):433-446 (2022).Renshaw E. and Chen A.Y.(1997).
Birth-death processes with mass annihilation and state-dependent immigration.
Comm. Statist. Stochastic Models, 13(2):239-253.
Vatutin V.A.(1974).
Asymptotic behavior of the probability of the first degeneration for branching processes with immigration.

Li Junping

Acknowledgements

Thank you!

Email: jpli@mail.csu.edu.cn

