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Background

• Branching process

State space Z+ = {0, 1, · · · }.

I Definition
A conservative Q-matrix Q = (qij ; i, j ∈ Z+) is called a
branching-immigration Q-matrix if it takes the following form:

qij =

{
ibj−i+1 + aj−i+1, if i ≥ 0, j ≥ i− 1

0, otherwise,
(1.1)

where{
a0 = 0, aj ≥ 0 (j ≥ 2), 0 < −a1 =

∑∞
j=2 aj <∞,

bj ≥ 0 (j 6= 1), 0 < −b1 =
∑

j 6=1 bj <∞.
. (1.2)
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Background

A Markov Branching-immigration process (simply, MBIP) is a
continuous-time Markov chain taking values in Z+ whose
transition function P (t) = (pij(t) : i, j ∈ Z+) satisfies the
Kolmogorov equations

P ′(t) = P (t)Q, (1.3)

where Q is a branching Q-matrix.
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Background

Li and Chen [1] presented the regularity criteria for Q defined in
(1.1)-(1.2). We assume that the process Q is regular throughout
this talk.
Let {X(t) : t ≥ 0} denote the corresponding process and
P (t) = (pij(t) : i, j ∈ Z+) denote its transition function.
Define

F (t, u) =

∞∑
j=0

p1j(t)u
j .
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Background

• Problems:

(i) How many particles died until time t ?

(ii) What is the m-birth number of particles until time t (here
m 6= 0 is a fixed integer) ?

(iii) How many particles who ever lived in the system (i.e., the
total death number)?
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Background

• Related conclusions:

(i) Weighted branching process: Li Y., Li J. and Chen A. (2021,
Sciences in China: Mathematics, in Chinese)

(ii) Weighted Markov collision processes: Li Y., Li J. (2021, Front.
Math. China, 16(2):525õ542).
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Preliminary

We first make some preliminaries. Suppose that D is a finite
subset of Z+ with 1 /∈ D. Let

[0, 1]D = {~v = (vk : k ∈ D) : vk ∈ [0, 1] ∀k ∈ D}

and

ZD+ = {~l = (lk : k ∈ D) : lk ∈ Z+ ∀k ∈ D}.

For simplicity of notations, in the following, we let 1 denote the
vector in ZD+ whose components are all 1 and for k ∈ D, ~ek denote
the vector in ZD+ whose k’th component is 1 and others are 0.
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Preliminary

Define

A(u) =

∞∑
j=1

aju
j−1, B(u) =

∞∑
j=0

bju
j (2.1)

and

BD(u,~v) =
∑
j∈D

bju
j~v ~ej , B̄D(u) =

∑
j∈D̄

bju
j (2.2)

for u ∈ [0, 1], ~v ∈ [0, 1]D, where ~v
~l =

∏
k∈D

vlkk for ~v = (vk : k ∈ D),

~l = (lk : k ∈ D) and D̄ = Z+ \D.

It is obvious that B(u), B̄D(u) are well defined at least on [0, 1],
and BD(u,~v) is well defined at least on [0, 1]× [0, 1]D.
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Preliminary

Define

A(u) =

∞∑
j=1

aju
j−1, B(u) =

∞∑
j=0

bju
j (2.1)

and

BD(u,~v) =
∑
j∈D

bju
j~v ~ej , B̄D(u) =

∑
j∈D̄

bju
j (2.2)

for u ∈ [0, 1], ~v ∈ [0, 1]D, where ~v
~l =

∏
k∈D

vlkk for ~v = (vk : k ∈ D),

~l = (lk : k ∈ D) and D̄ = Z+ \D.
It is obvious that B(u), B̄D(u) are well defined at least on [0, 1],
and BD(u,~v) is well defined at least on [0, 1]× [0, 1]D.

Li Junping



Background Preliminary Conclusions References Acknowledgements

Preliminary

The following theorem reveals the properties of B̄D(u) +BD(u,~v).

Theorem 2.1.

(i) For any ~v ∈ [0, 1]D,

B̄D(u) +BD(u,~v) = 0 (2.3)

has at most 2 roots in [0, 1]. The minimal nonnegative root
ρ(~v) ≤ ρ, where ρ is the minimal nonnegative root of B(u) = 0.
(ii) lim~v↑1 ρ(~v) = ρ, where ~v ↑ 1 means vk ↑ 1 (k ∈ D).
(iii) ρ(~v) ∈ C∞([0, 1)D) and ρ(~v) can be expanded as

ρ(~v) =
∑
~l∈ZD

+

ρ~l ~v
~l,

where ρ~l ≥ 0 for all ~l ∈ ZD+ .
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Preliminary

Sketch of proof.

(1) Since 0 ≤ BD(u,0) ≤ BD(u,~v) ≤ BD(u,1), (i) follows from
Li and Chen [2]. (ii) is easy.

(2) For (iii), it follows from Li, Li & Chen [3] that
ρ(~v) ∈ C∞([0, 1)D).
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Preliminary

Suppose that

ρ(~v) =
∑
~k∈ZN

+

ρ~k~v
~k.

Substituting the above expression of ρ(~v) into (2.3) yields

0 ≡
∑
~l∈ZD

+

(
∑
j∈D̄

bjρ
∗(j)
~l

)~v
~l +

∑
j∈D

bj
∑
~l∈ZD

+

ρ
∗(j)
~l

~v
~l+~ej .

(3) By using mathematical induction respect to ~l · 1, we can prove
ρ~l ≥ 0. �

Li Junping



Background Preliminary Conclusions References Acknowledgements

Conclusions

we now consider the multi-birth property of {X(t) : t ≥ 0}.

As in the previous section, let D ⊂ Z+ be a finite subset with
1 /∈ D. We also assume that bk > 0 for all k ∈ D since there is no
individual giving (k − 1) offsprings if bk = 0. For simplicity of
notation, we write the set {k − 1 : k ∈ D} as D − 1 in the
following, i.e.,

D − 1 = {k − 1 : k ∈ D}.
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Conclusions

The main purpose of this talk is to analyze the (D − 1)-birth
numbers of {X(t) : t ≥ 0}. For this purpose, we construct a new

Q-matrix Q̃ = (q̃
(i,~m),(j,~l)

: (i, ~m), (j,~l) ∈ Z+ × ZD+), where

q̃(i,~m),(j,~l)

=


ibj−i+1 + aj−i+1, if i ≥ 0, j−i+1 ∈ D̄,~l = ~m,

ibj−i+1, if i ≥ 0,j− i+1 ∈ D,~l= ~m+~ej−i+1,

aj−i+1, if i ≥ 0,j −i+1 ∈ D,~l = ~m,

0, otherwise,

(3.1)

with {ak : k ≥ 0} and {bk : k ≥ 0} given in (1.2).
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Conclusions

Let P̃ (t) = (p̃
(i,~m),(j,~l)

(t) : (i, ~m), (j,~l) ∈ Z+ × ZD+) be the Feller

minimal Q̃-function. Define

Fi,~m(t, u,~v) =
∑

(j,~l)∈Z+×ZD
+

p̃
(i,~m),(j,~l)

(t)uj~v
~l, (u,~v) ∈ [0, 1]× [0, 1]D,

where ~v
~l =

∏
k∈D v

lk
k for ~v = (vk : k ∈ D) and ~l = (lk : k ∈ D).
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Lemma 3.1.

Let Q̃ be defined in (3.1) and P̃ (t) = (p̃(i,~m),(j,~l)(t)) be the Feller

minimal Q̃-function. Then
(i) for any (i, ~m) ∈ Z+ × ZD

+ and (u,~v) ∈ [0, 1]× [0, 1]D,

∂Fi,~m(t, u,~v)

∂t
= [B̄D(u) +BD(u,~v)] ·

∂Fi,~m(t, u,~v)

∂u
+A(u) · Fi,~m(t, u,~v). (3.2)

Moreover,

Fi,~m(t, u,~v)− ui~v ~m = [B̄D(u) +BD(u,~v)] · ∂
∂u

Fi,~m(t, u,~v)

+A(u) · Fi,~m(t, u,~v), (3.3)

where B̄D(u), BD(u,~v) are as in (2.2), Fi,~m(t, u,~v) =
∫ t

0
Fi,~m(s, u,~v)ds.

(ii) Q̃ is regular if and only if Q is regular.
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Sketch of proof. (1) By Kolmogorov forward equations,∑
(j,~l)∈Z+×ZD

+

p̃′
(i,~m),(j,~l)

(t)uj~v
~l

= [B̄D(u) +BD(u,~v)] ·
∑

(k,~r)∈Z+×ZD
+

p̃(i,~m),(k,~r)(t) · kuk−1~v~r

+A(u) ·
∑

(k,~r)∈Z+×ZD
+

p̃(i,~m),(k,~r)(t) · uk~v~r.

Thus, (i) is proved.
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Conclusions

(2) Suppose Q is regular. By Li and Chen [1], we have ρ = 1 or
that ρ < 1 and

∫ 1
ε

du
−B(u) = +∞ for all ε ∈ (ρ, 1). If ρ = 1, then

let y = ρ(~v) in (3.3), we know that

Fi,~m(t, ρ(~v), ~v)− ρi(~v)~v ~m = A(ρ(~v)) · Fi,~m(t, ρ(~v), ~v).

Then, letting ~v ↑ 1 in the above equality yields that Q̃ is regular. If
ρ < 1 and

∫ 1
ε

du
−B(u) = +∞ for all ε ∈ (ρ, 1). Using Laplace

transform, we can also get the conclusion.
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(3) Conversely, suppose that Q̃ is regular. By the theory of Markov

chains (p̃
(i,~m),(j,~l)

(t) : (i, ~m), (j,~l) ∈ Z+ × ZD+) can be obtained as

follows.

p̃
(n)

(i,~m),(j,~l)
(t)

=

δ(i,~m),(j,~l)e
−q̃(i,~m)t, if n = 0

p̃
(0)

(i,~m),(j,~l)
(t) +

∫ t

0
e−q̃(i,~m)s

∑
(k,~r)6=(i,~m)

q̃(i,~m),(k,~r) · p̃
(n−1)

(k,~r),(j,~l)
(t− s)ds, if n ≥ 1

p̃(i,~m),(j,~l)(t) = lim
n→∞

p̃
(n)

(i,~m),(j,~l)
(t), (i, ~m), (j,~l) ∈ Z+ × ZD

+ ,

let
f

(n)
i,j (t, ~m) =

∑
~l∈ZD

+

p̃
(n)

(i,~m),(j,~l)
(t), n ≥ 0.

It can be proved that f
(n)
i,j (t, ~m) is dependent of ~m and converges

to the Feller minimal Q-function, which implies that Q is regular.
�

Li Junping



Background Preliminary Conclusions References Acknowledgements

Conclusions

Since we have assumed that Q is regular, by Lemma 3.1, we can
see that Q̃ determines a unique Q̃-process {(X̃(t), ~Y (t)) : t ≥ 0},
where ~Y (t) = (Yk(t) : k ∈ D) counts the (D − 1)-birth number of
{X̃(t) : t ≥ 0}. It follows from the proof of Lemma 3.1 that
{X̃(t) : t ≥ 0} is the MBIP with generator Q and thus has the
same distribution as {X(t) : t ≥ 0}. Therefore, we still use
{X(t) : t ≥ 0} to denote {X̃(t) : t ≥ 0} in the following, i.e.,
{(X(t), ~Y (t)) : t ≥ 0} is the Q̃-process, where {X(t) : t ≥ 0} is
the MBIP and ~Y (t) = (Yk(t) : k ∈ D) counts the (D − 1)-birth
number of {X(t) : t ≥ 0}.
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In particular,
(i) if D = {0} then Y0(t) counts the death number of
{X(t) : t ≥ 0} until time t;
(ii) if D = {i} (i ≥ 2), then Yi(t) counts the (i− 1)-birth number
of {X(t) : t ≥ 0} until time t;
(iii) if D = {0, i} (i ≥ 2), then ~Y (t) = (Y0(t), Yi(t)) counts the
death number and the (i− 1)-birth number of {X(t) : t ≥ 0} until
time t.
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Lemma 3.2.

For P̃ (t), we have that for any (i, ~m) ∈ Z+ × ZD+ and
(u,~v) ∈ [0, 1]× [0, 1]D,

Fi,~m(t, u,~v) = [F1,0(t, u,~v)]i · F0,0(t, u,~v) · ~v ~m, (3.4)

where ~v ~m =
∏
k∈D

vmk
k for ~v = (vk : k ∈ D) and ~m = (mk : k ∈ D).

Proof. Omitted.

Li Junping



Background Preliminary Conclusions References Acknowledgements

Conclusions

Now, denote{
H(t, u,~v) = F0,0(t, u,~v), (u,~v) ∈ [0, 1]× [0, 1)D,

G(t, u,~v) = F1,0(t, u,~v), (u,~v) ∈ [0, 1]× [0, 1)D.

Lemma 3.3.

Suppose that (u,~v) ∈ [0, 1]× [0, 1)D. Then (H(t, u,~v), G(t, u,~v))
is the unique solution of the system of differential equations

∂x
∂t = xA(y),
∂y
∂t = x[BD(y,~v) + B̄D(y) + yA(y)],

x |t=0= 1,

y |t=0= u.

(3.5)
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Conclusions

Sketch of proof. It can be proved by using Kolmogorov backward
equations and Lemma 3.2.

The following theorem gives the joint probability generating
function of (D − 1)-birth numbers until time t, i.e., the joint
probability generating function of ~Y (t).
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Sketch of proof. It can be proved by using Kolmogorov backward
equations and Lemma 3.2.

The following theorem gives the joint probability generating
function of (D − 1)-birth numbers until time t, i.e., the joint
probability generating function of ~Y (t).
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Theorem 3.1.

Suppose that {X(t) : t ≥ 0} is an MBIP. Then the joint
probability generating function of ~Y (t) is given by{

E[~v
~Y (t)|X(0) = 0] = H(t, 1, ~v), ~v ∈ [0, 1]D,

E[~v
~Y (t)|X(0) = 1] = G(t, 1, ~v), ~v ∈ [0, 1]D,

where (H(t, u,~v), G(t, u,~v)) is the unique solution of (3.5).
In particular, if a1 = 0, then

E[~v
~Y (t)|X(0) = 1] = G(t, 1, ~v), ~v ∈ [0, 1]D,

where G(t, u,~v) is the unique solution of{
∂y
∂t = BD(y,~v) + B̄D(y)

y|t=0 = u.
(3.6)
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Furthermore,

P (~Y (t) = ~m|X(0) = 1) = g~m(t) ∀~m ∈ ZD
+ ,

where {
g0(t) = G(t, 1,0)

g~m(t) = B̄D(g0(t)) ·
∫ t

0
F~m(s)

B̄D(g0(s))
ds, ~m 6= 0

with

F~m(t) =
∑
i∈D

bi · g∗(i)~m−~ei(t)

+
∑
i∈D̄

bi ·
∑

~l(1),··· ,~l(i) 6=~m, ~l(1)+···+~l(i)=~m

g~l(1)(t) · · · g~l(i)(t)

and {g∗(i)~m (t) : ~m ∈ ZD
+} being the i’th convolution of {g~m(t) : ~m ∈ ZD

+}.
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Sketch of Proof. (1) By Lemmas 3.2 and 3.3, we can prove (i).
(2) Suppose that a1 = 0. (3.5) becomes (3.6). we suppose that

G(t, 1, ~v) =
∑
~l∈ZD

+

g~l(t)~v
~l.

By (3.6), we get{
g′0(t) =

∑
i∈D̄ big

i
0(t) = B̄D(g0(t)),

g′~l(t) =
∑

i∈D big
∗(i)
~l−~ei

(t) +
∑

i∈D̄ big
∗(i)
~l

(t), ~l 6= 0.
(3.7)

Hence, it can be proved that

g~l(t) = B̄D(g0(t)) ·
∫ t

0

F~l(s)

B̄D(g0(s))
ds, ~l 6= 0.

�
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Remark 3.1.

(i) Generally, if X(t) starts from X(0) = i(> 1), then

E[~v
~Y (t)|X(0) = i] = H(t, 1, ~v) · [G(t, 1, ~v)]i.

(ii) If a1 = 0, then by the proof of Theorem 3.1,

G(t, u,~v) =
∑

(j,~l)∈Z+×ZD
+

g
j,~l

(t)uj~v
~l, (u,~v) ∈ [0, 1]× [0, 1)D,

where g
j,~l

(t) = p
(1,0),(j,~l)

(t).
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The following theorem gives a recursive algorithm of g
j,~l

(t).

Let g
∗(i)
j~k

(t) be the ith convolution of g
j~k

(t) and

Fj,~k(t) =
∑
i∈N

big
∗(i)
j~k−~ei

(t)

+
∑
i∈Nc

bi
∑

(l1,~k1),··· ,(li,~ki) 6=(j,~k),
∑i

m=1(lm,~km)=(j,~k)

gl1~k1
(t) · · · gli~ki

(t).
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Theorem 3.2.

(i) If 0 ∈ D or b0 = 0, then{
g0,0(t) = 0

gj,~l(t) = eb1t[δj,1δ~l,0 +
∫ t

0
Fj,~l(s)e

−b1sds], (j,~l) 6= (0,0).

(ii) If 0 /∈ D and b0 > 0, then{
g0,0(t) = G(t, 0,0)

gj,~l(t) = B̄D(g0,0(t)) · [δj,1δ~l,0b
−1
0 +

∫ t

0

F
j,~l

(s)

B̄D(g0,0(s))
ds], (j,~l) 6= (0,0),
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Sketch of proof. Suppose that

G(t, u,~v) =
∑

(j,~k)∈Z+×ZD
+

g
j~k

(t)uj~v
~k.

By (3.6),∑
(j,~k)∈Z+×ZD

+

g′
j~k

(t)uj~v
~k =

∑
(j,~k)∈Z+×ZD

+\{0}

∑
i∈D

big
∗(i)
j~k−~ei

(t)uj~v
~k

+
∑

(j,~k)∈Z+×ZD
+

∑
i∈D̄

big
∗(i)
j~k

(t)uj~v
~k.
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Comparing the coefficients on the both sides yields

g′
j~k

(t) =
∑
i∈D

big
∗(i)
j~k−~ei

(t) +
∑
i∈D̄

big
∗(i)
j~k

(t), (j,~k) ∈ ZN+1
+ . (3.8)

Hence,
g00(t) = G(t, 0,0).

For (j,~k) 6= (0,0), by (3.8),

g′
j~k

(t) = g
j~k

(t)B̄′D(g00(t)) + F
j,~k

(t). (3.9)
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(i) If 0 ∈ D or b0 = 0, then by (3.8), it is easy to see that

g00(t) = 0, B̄′D(g00(t)) = b1.

By (3.9),

g
j~k

(t) = eb1t[δj,1δ~k,0 +

∫ t

0
F
j,~k

(s)e−b1sds].

(ii) If 0 /∈ D and b0 > 0, then

e
∫ t
0 B̄

′
D(g00(s))ds = e

∫ t
0 B̄

′
D(g00(s))· g′00(s)

B̄D(g00(s))
ds

=
B̄D(g00(t))

b0

Hence,

g
j~k

(t) = B̄D(g00(t)) · [δj,1δ~k,0b
−1
0 +

∫ t

0

F
j,~k

(s)

B̄D(g00(s))
ds], (j,~k) 6= (0,0).

�
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Corollary 3.1.

Let {X(t); t ≥ 0} be an MBP with X(0) = 1. Then

E[vY0(t)|X(0) = 1] = G(t, 1, v), v ∈ [0, 1],

where G(t, u, v) is the unique solution of the equation{
∂y
∂t = B(y)− b0(1− v),

y|t=0 = u,
u, v ∈ [0, 1].
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Corollary 3.2.

Let {X(t); t ≥ 0} be an MBP with X(0) = 1 and m(> 1) be
fixed. Then

E[vYm(t)|X(0) = 1] = G(t, 1, v), v ∈ [0, 1],

where G(t, u, v) is the unique solution of the equation{
∂y
∂t = B(y)− bm(1− v)ym,

y|t=0 = u,
u, v ∈ [0, 1].
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Let

τ = inf{t ≥ 0 : X(t) = 0}

be the hitting time of 0 for X(t).
By Theorem 3.1, we have

Theorem 3.3.

Let {X(t) : t ≥ 0} be an MBP with X(0) = 1. Then

E[~v
~Y (τ)|τ <∞] = ρ−1 · ρ(~v), ~v ∈ [0, 1]D,

where ρ is the minimal nonnegative root of B(u) = 0.
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Sketch of proof. (1) By Theorem 3.1 and (3.3) with i = 1 and
u = ρ(~v), for ∀t ≥ 0,

ρ(~v) =
∑
~l∈ZD

+

p
(1,0),(0,~l)

(t)~v
~l +

∑
~l∈ZD

+

(

∞∑
j=1

p
(1,0),(j,~l)

(t)ρ(~v)j)~v
~l.(3.10)

(2) Further prove that

G(∞, 1, ~v) =
∑
~l∈ZD

+

p(1,0),(0,~l)(∞)~v
~l + lim

t→∞

∑
~l∈ZD

+

(

∞∑
j=1

p(1,0),(j,~l)(t))~v
~l(3.11)

and

ρ(~v) =
∑
~l∈ZD

+

p
(1,0),(0,~l)

(∞)~v
~l. (3.12)

Li Junping



Background Preliminary Conclusions References Acknowledgements

Conclusions

(3) By (3.11) and (3.12),

G(~v) =
∑
~l∈ZD

+

P (~Y (τ) = ~l |τ <∞) · ~v~l = ρ−1 · ρ(~v)

and

P (~Y (τ) ≤ ~l |τ =∞) = (1− ρ)−1 · lim
t→∞

∑
~m≤~l

∞∑
j=1

p(1,0),(j,~m)(t) = 0.

�

Li Junping



Background Preliminary Conclusions References Acknowledgements

Examples

Example 3.1. Let X(t) be a birth-death type MBP with death
rate pb and birth rate qb (here, b > 0, p ∈ (0, 1), p+ q = 1),
X(0) = 1. Then

B(u) = b(p− u+ qu2).

Proposition 3.1.

Let Y (t) be the death number of X(·) until t. Then

E[vY (t)] = β(v) +
α(v)− β(v)

1 + α(v)−1
1−β(v) · e[α(v)−β(v)]bqt

,

where

α(v) =
1 +
√

1− 4pqv

2q
, β(v) =

1−
√

1− 4pqv

2q
.
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Examples

Proposition 3.2.

Let Y (t) be the death number of X(·) until t. Then

E[vY (τ)|τ <∞] = β(v),

where

β(v) = p

(
v +

∞∑
n=2

(2n− 3)!!2n−1(pq)n−1

n!
vn

)
.
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Examples

Example 3.2. Let X(t) be an MBP with b0 = pb and b3 = qb
(here, b > 0, p ∈ (0, 1), p+ q = 1), X(0) = 1. Then

B(u) = b(p− u+ qu3).
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Examples

Proposition 3.3.

Let Y (t) be the death number of X(·) until t. Then

E[vY (t)] =

∞∑
n=0

gn(t)vn,

where{
g0(t) = (q + pe2bt)−1/2

gn(t) = e2bt · (q + pe2bt)−3/2 ·
∫ t

0
e−2bs(q + pe2bs)3/2Fn(s)ds, n ≥ 1

with

Fn(t) = bpδ1,n + bq ·
∑

k1,k2,k3<n,k1+k2+k3=n

gk1
(t)gk2

(t)gk3
(t).
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